Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 50 x^{2} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.145633696334$, $\pm0.854366303666$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-2}, \sqrt{33})\) |
Galois group: | $C_2^2$ |
Jacobians: | $128$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1632$ | $2663424$ | $4750231392$ | $7989803237376$ | $13422659341837152$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $42$ | $1582$ | $68922$ | $2827486$ | $115856202$ | $4750358542$ | $194754273882$ | $7984935046078$ | $327381934393962$ | $13422659373521902$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 128 curves (of which all are hyperelliptic):
- $y^2=7 x^6+31 x^5+x^4+33 x^3+32 x^2+2 x+35$
- $y^2=x^6+22 x^5+6 x^4+34 x^3+28 x^2+12 x+5$
- $y^2=36 x^6+25 x^5+36 x^4+29 x^3+16 x^2+9 x+35$
- $y^2=x^6+16 x^5+35 x^4+36 x^3+24 x^2+26 x+21$
- $y^2=38 x^6+19 x^5+38 x^4+22 x^3+14 x^2+27 x+21$
- $y^2=23 x^6+32 x^5+23 x^4+9 x^3+2 x^2+39 x+3$
- $y^2=13 x^5+35 x^4+23 x^3+28 x^2+31 x+22$
- $y^2=37 x^5+5 x^4+15 x^3+4 x^2+22 x+9$
- $y^2=16 x^6+6 x^5+19 x^4+x^3+38 x^2+20$
- $y^2=14 x^6+36 x^5+32 x^4+6 x^3+23 x^2+38$
- $y^2=23 x^6+20 x^5+9 x^4+x^3+15 x^2+37 x+4$
- $y^2=16 x^6+7 x^5+8 x^4+4 x^3+40 x^2+35 x+12$
- $y^2=40 x^6+2 x^5+38 x^4+30 x^3+39 x^2+8 x+17$
- $y^2=35 x^6+12 x^5+23 x^4+16 x^3+29 x^2+7 x+20$
- $y^2=39 x^6+26 x^5+28 x^4+5 x^3+39 x^2+29 x+13$
- $y^2=14 x^6+38 x^5+17 x^4+2 x^3+19 x^2+7 x+22$
- $y^2=2 x^6+23 x^5+20 x^4+12 x^3+32 x^2+x+9$
- $y^2=39 x^6+12 x^5+x^4+30 x^3+38 x^2+26 x+13$
- $y^2=7 x^6+37 x^5+36 x^4+3 x^3+29 x^2+8 x+12$
- $y^2=18 x^6+21 x^5+30 x^4+8 x^3+19 x^2+13 x+32$
- and 108 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{2}}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{33})\). |
The base change of $A$ to $\F_{41^{2}}$ is 1.1681.aby 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-66}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.41.a_by | $4$ | (not in LMFDB) |
2.41.ai_bg | $8$ | (not in LMFDB) |
2.41.i_bg | $8$ | (not in LMFDB) |