Properties

Label 2.41.a_aby
Base field $\F_{41}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{41}$
Dimension:  $2$
L-polynomial:  $1 - 50 x^{2} + 1681 x^{4}$
Frobenius angles:  $\pm0.145633696334$, $\pm0.854366303666$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-2}, \sqrt{33})\)
Galois group:  $C_2^2$
Jacobians:  $128$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1632$ $2663424$ $4750231392$ $7989803237376$ $13422659341837152$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $42$ $1582$ $68922$ $2827486$ $115856202$ $4750358542$ $194754273882$ $7984935046078$ $327381934393962$ $13422659373521902$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 128 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{41^{2}}$.

Endomorphism algebra over $\F_{41}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{33})\).
Endomorphism algebra over $\overline{\F}_{41}$
The base change of $A$ to $\F_{41^{2}}$ is 1.1681.aby 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-66}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.41.a_by$4$(not in LMFDB)
2.41.ai_bg$8$(not in LMFDB)
2.41.i_bg$8$(not in LMFDB)