Properties

Label 2-219-1.1-c1-0-12
Degree $2$
Conductor $219$
Sign $-1$
Analytic cond. $1.74872$
Root an. cond. $1.32239$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s − 3·5-s − 4·7-s + 9-s − 2·12-s − 4·13-s − 3·15-s + 4·16-s + 3·17-s − 19-s + 6·20-s − 4·21-s + 6·23-s + 4·25-s + 27-s + 8·28-s − 6·29-s − 10·31-s + 12·35-s − 2·36-s − 7·37-s − 4·39-s + 2·43-s − 3·45-s − 3·47-s + 4·48-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s − 1.34·5-s − 1.51·7-s + 1/3·9-s − 0.577·12-s − 1.10·13-s − 0.774·15-s + 16-s + 0.727·17-s − 0.229·19-s + 1.34·20-s − 0.872·21-s + 1.25·23-s + 4/5·25-s + 0.192·27-s + 1.51·28-s − 1.11·29-s − 1.79·31-s + 2.02·35-s − 1/3·36-s − 1.15·37-s − 0.640·39-s + 0.304·43-s − 0.447·45-s − 0.437·47-s + 0.577·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 219 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 219 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(219\)    =    \(3 \cdot 73\)
Sign: $-1$
Analytic conductor: \(1.74872\)
Root analytic conductor: \(1.32239\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 219,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
73 \( 1 - T \)
good2 \( 1 + p T^{2} \) 1.2.a
5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 12 T + p T^{2} \) 1.71.am
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.23179896333458291697489196409, −10.69641796523503644619736991575, −9.564050761603220341273246198979, −9.017381962638777474294278722387, −7.78807751320390520795139874651, −7.04464507770050533616860795119, −5.28896520186268148672068535704, −3.92225433818331354547499519639, −3.21497761793707302576653608304, 0, 3.21497761793707302576653608304, 3.92225433818331354547499519639, 5.28896520186268148672068535704, 7.04464507770050533616860795119, 7.78807751320390520795139874651, 9.017381962638777474294278722387, 9.564050761603220341273246198979, 10.69641796523503644619736991575, 12.23179896333458291697489196409

Graph of the $Z$-function along the critical line