Properties

Label 219.2.a.b.1.1
Level $219$
Weight $2$
Character 219.1
Self dual yes
Analytic conductor $1.749$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [219,2,Mod(1,219)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("219.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(219, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 219 = 3 \cdot 73 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 219.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.74872380427\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 219.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -2.00000 q^{4} -3.00000 q^{5} -4.00000 q^{7} +1.00000 q^{9} -2.00000 q^{12} -4.00000 q^{13} -3.00000 q^{15} +4.00000 q^{16} +3.00000 q^{17} -1.00000 q^{19} +6.00000 q^{20} -4.00000 q^{21} +6.00000 q^{23} +4.00000 q^{25} +1.00000 q^{27} +8.00000 q^{28} -6.00000 q^{29} -10.0000 q^{31} +12.0000 q^{35} -2.00000 q^{36} -7.00000 q^{37} -4.00000 q^{39} +2.00000 q^{43} -3.00000 q^{45} -3.00000 q^{47} +4.00000 q^{48} +9.00000 q^{49} +3.00000 q^{51} +8.00000 q^{52} +9.00000 q^{53} -1.00000 q^{57} -9.00000 q^{59} +6.00000 q^{60} -1.00000 q^{61} -4.00000 q^{63} -8.00000 q^{64} +12.0000 q^{65} -13.0000 q^{67} -6.00000 q^{68} +6.00000 q^{69} +12.0000 q^{71} +1.00000 q^{73} +4.00000 q^{75} +2.00000 q^{76} +11.0000 q^{79} -12.0000 q^{80} +1.00000 q^{81} +15.0000 q^{83} +8.00000 q^{84} -9.00000 q^{85} -6.00000 q^{87} -18.0000 q^{89} +16.0000 q^{91} -12.0000 q^{92} -10.0000 q^{93} +3.00000 q^{95} +5.00000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 1.00000 0.577350
\(4\) −2.00000 −1.00000
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) −2.00000 −0.577350
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) −3.00000 −0.774597
\(16\) 4.00000 1.00000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 6.00000 1.34164
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 8.00000 1.51186
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −10.0000 −1.79605 −0.898027 0.439941i \(-0.854999\pi\)
−0.898027 + 0.439941i \(0.854999\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 12.0000 2.02837
\(36\) −2.00000 −0.333333
\(37\) −7.00000 −1.15079 −0.575396 0.817875i \(-0.695152\pi\)
−0.575396 + 0.817875i \(0.695152\pi\)
\(38\) 0 0
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 0 0
\(45\) −3.00000 −0.447214
\(46\) 0 0
\(47\) −3.00000 −0.437595 −0.218797 0.975770i \(-0.570213\pi\)
−0.218797 + 0.975770i \(0.570213\pi\)
\(48\) 4.00000 0.577350
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) 3.00000 0.420084
\(52\) 8.00000 1.10940
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 0 0
\(59\) −9.00000 −1.17170 −0.585850 0.810419i \(-0.699239\pi\)
−0.585850 + 0.810419i \(0.699239\pi\)
\(60\) 6.00000 0.774597
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) −4.00000 −0.503953
\(64\) −8.00000 −1.00000
\(65\) 12.0000 1.48842
\(66\) 0 0
\(67\) −13.0000 −1.58820 −0.794101 0.607785i \(-0.792058\pi\)
−0.794101 + 0.607785i \(0.792058\pi\)
\(68\) −6.00000 −0.727607
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 1.00000 0.117041
\(74\) 0 0
\(75\) 4.00000 0.461880
\(76\) 2.00000 0.229416
\(77\) 0 0
\(78\) 0 0
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) −12.0000 −1.34164
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 15.0000 1.64646 0.823232 0.567705i \(-0.192169\pi\)
0.823232 + 0.567705i \(0.192169\pi\)
\(84\) 8.00000 0.872872
\(85\) −9.00000 −0.976187
\(86\) 0 0
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) −18.0000 −1.90800 −0.953998 0.299813i \(-0.903076\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 0 0
\(91\) 16.0000 1.67726
\(92\) −12.0000 −1.25109
\(93\) −10.0000 −1.03695
\(94\) 0 0
\(95\) 3.00000 0.307794
\(96\) 0 0
\(97\) 5.00000 0.507673 0.253837 0.967247i \(-0.418307\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −8.00000 −0.800000
\(101\) −15.0000 −1.49256 −0.746278 0.665635i \(-0.768161\pi\)
−0.746278 + 0.665635i \(0.768161\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 12.0000 1.17108
\(106\) 0 0
\(107\) −15.0000 −1.45010 −0.725052 0.688694i \(-0.758184\pi\)
−0.725052 + 0.688694i \(0.758184\pi\)
\(108\) −2.00000 −0.192450
\(109\) 5.00000 0.478913 0.239457 0.970907i \(-0.423031\pi\)
0.239457 + 0.970907i \(0.423031\pi\)
\(110\) 0 0
\(111\) −7.00000 −0.664411
\(112\) −16.0000 −1.51186
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) −18.0000 −1.67851
\(116\) 12.0000 1.11417
\(117\) −4.00000 −0.369800
\(118\) 0 0
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 20.0000 1.79605
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 11.0000 0.976092 0.488046 0.872818i \(-0.337710\pi\)
0.488046 + 0.872818i \(0.337710\pi\)
\(128\) 0 0
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) 3.00000 0.262111 0.131056 0.991375i \(-0.458163\pi\)
0.131056 + 0.991375i \(0.458163\pi\)
\(132\) 0 0
\(133\) 4.00000 0.346844
\(134\) 0 0
\(135\) −3.00000 −0.258199
\(136\) 0 0
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) −24.0000 −2.02837
\(141\) −3.00000 −0.252646
\(142\) 0 0
\(143\) 0 0
\(144\) 4.00000 0.333333
\(145\) 18.0000 1.49482
\(146\) 0 0
\(147\) 9.00000 0.742307
\(148\) 14.0000 1.15079
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 0 0
\(153\) 3.00000 0.242536
\(154\) 0 0
\(155\) 30.0000 2.40966
\(156\) 8.00000 0.640513
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 0 0
\(159\) 9.00000 0.713746
\(160\) 0 0
\(161\) −24.0000 −1.89146
\(162\) 0 0
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 24.0000 1.85718 0.928588 0.371113i \(-0.121024\pi\)
0.928588 + 0.371113i \(0.121024\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) −4.00000 −0.304997
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) 0 0
\(175\) −16.0000 −1.20949
\(176\) 0 0
\(177\) −9.00000 −0.676481
\(178\) 0 0
\(179\) 9.00000 0.672692 0.336346 0.941739i \(-0.390809\pi\)
0.336346 + 0.941739i \(0.390809\pi\)
\(180\) 6.00000 0.447214
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) −1.00000 −0.0739221
\(184\) 0 0
\(185\) 21.0000 1.54395
\(186\) 0 0
\(187\) 0 0
\(188\) 6.00000 0.437595
\(189\) −4.00000 −0.290957
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) −8.00000 −0.577350
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 0 0
\(195\) 12.0000 0.859338
\(196\) −18.0000 −1.28571
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) −13.0000 −0.916949
\(202\) 0 0
\(203\) 24.0000 1.68447
\(204\) −6.00000 −0.420084
\(205\) 0 0
\(206\) 0 0
\(207\) 6.00000 0.417029
\(208\) −16.0000 −1.10940
\(209\) 0 0
\(210\) 0 0
\(211\) −1.00000 −0.0688428 −0.0344214 0.999407i \(-0.510959\pi\)
−0.0344214 + 0.999407i \(0.510959\pi\)
\(212\) −18.0000 −1.23625
\(213\) 12.0000 0.822226
\(214\) 0 0
\(215\) −6.00000 −0.409197
\(216\) 0 0
\(217\) 40.0000 2.71538
\(218\) 0 0
\(219\) 1.00000 0.0675737
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) 20.0000 1.33930 0.669650 0.742677i \(-0.266444\pi\)
0.669650 + 0.742677i \(0.266444\pi\)
\(224\) 0 0
\(225\) 4.00000 0.266667
\(226\) 0 0
\(227\) 30.0000 1.99117 0.995585 0.0938647i \(-0.0299221\pi\)
0.995585 + 0.0938647i \(0.0299221\pi\)
\(228\) 2.00000 0.132453
\(229\) −16.0000 −1.05731 −0.528655 0.848837i \(-0.677303\pi\)
−0.528655 + 0.848837i \(0.677303\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.00000 0.196537 0.0982683 0.995160i \(-0.468670\pi\)
0.0982683 + 0.995160i \(0.468670\pi\)
\(234\) 0 0
\(235\) 9.00000 0.587095
\(236\) 18.0000 1.17170
\(237\) 11.0000 0.714527
\(238\) 0 0
\(239\) 3.00000 0.194054 0.0970269 0.995282i \(-0.469067\pi\)
0.0970269 + 0.995282i \(0.469067\pi\)
\(240\) −12.0000 −0.774597
\(241\) −28.0000 −1.80364 −0.901819 0.432113i \(-0.857768\pi\)
−0.901819 + 0.432113i \(0.857768\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 2.00000 0.128037
\(245\) −27.0000 −1.72497
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 0 0
\(249\) 15.0000 0.950586
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 8.00000 0.503953
\(253\) 0 0
\(254\) 0 0
\(255\) −9.00000 −0.563602
\(256\) 16.0000 1.00000
\(257\) −12.0000 −0.748539 −0.374270 0.927320i \(-0.622107\pi\)
−0.374270 + 0.927320i \(0.622107\pi\)
\(258\) 0 0
\(259\) 28.0000 1.73984
\(260\) −24.0000 −1.48842
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) −9.00000 −0.554964 −0.277482 0.960731i \(-0.589500\pi\)
−0.277482 + 0.960731i \(0.589500\pi\)
\(264\) 0 0
\(265\) −27.0000 −1.65860
\(266\) 0 0
\(267\) −18.0000 −1.10158
\(268\) 26.0000 1.58820
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 12.0000 0.727607
\(273\) 16.0000 0.968364
\(274\) 0 0
\(275\) 0 0
\(276\) −12.0000 −0.722315
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 0 0
\(279\) −10.0000 −0.598684
\(280\) 0 0
\(281\) 15.0000 0.894825 0.447412 0.894328i \(-0.352346\pi\)
0.447412 + 0.894328i \(0.352346\pi\)
\(282\) 0 0
\(283\) −28.0000 −1.66443 −0.832214 0.554455i \(-0.812927\pi\)
−0.832214 + 0.554455i \(0.812927\pi\)
\(284\) −24.0000 −1.42414
\(285\) 3.00000 0.177705
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 5.00000 0.293105
\(292\) −2.00000 −0.117041
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) 27.0000 1.57200
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −24.0000 −1.38796
\(300\) −8.00000 −0.461880
\(301\) −8.00000 −0.461112
\(302\) 0 0
\(303\) −15.0000 −0.861727
\(304\) −4.00000 −0.229416
\(305\) 3.00000 0.171780
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) 0 0
\(311\) 30.0000 1.70114 0.850572 0.525859i \(-0.176256\pi\)
0.850572 + 0.525859i \(0.176256\pi\)
\(312\) 0 0
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) 0 0
\(315\) 12.0000 0.676123
\(316\) −22.0000 −1.23760
\(317\) 30.0000 1.68497 0.842484 0.538721i \(-0.181092\pi\)
0.842484 + 0.538721i \(0.181092\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 24.0000 1.34164
\(321\) −15.0000 −0.837218
\(322\) 0 0
\(323\) −3.00000 −0.166924
\(324\) −2.00000 −0.111111
\(325\) −16.0000 −0.887520
\(326\) 0 0
\(327\) 5.00000 0.276501
\(328\) 0 0
\(329\) 12.0000 0.661581
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) −30.0000 −1.64646
\(333\) −7.00000 −0.383598
\(334\) 0 0
\(335\) 39.0000 2.13080
\(336\) −16.0000 −0.872872
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) −6.00000 −0.325875
\(340\) 18.0000 0.976187
\(341\) 0 0
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 0 0
\(345\) −18.0000 −0.969087
\(346\) 0 0
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 12.0000 0.643268
\(349\) −31.0000 −1.65939 −0.829696 0.558216i \(-0.811486\pi\)
−0.829696 + 0.558216i \(0.811486\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) 0 0
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) 0 0
\(355\) −36.0000 −1.91068
\(356\) 36.0000 1.90800
\(357\) −12.0000 −0.635107
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) −11.0000 −0.577350
\(364\) −32.0000 −1.67726
\(365\) −3.00000 −0.157027
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 24.0000 1.25109
\(369\) 0 0
\(370\) 0 0
\(371\) −36.0000 −1.86903
\(372\) 20.0000 1.03695
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 3.00000 0.154919
\(376\) 0 0
\(377\) 24.0000 1.23606
\(378\) 0 0
\(379\) −34.0000 −1.74646 −0.873231 0.487306i \(-0.837980\pi\)
−0.873231 + 0.487306i \(0.837980\pi\)
\(380\) −6.00000 −0.307794
\(381\) 11.0000 0.563547
\(382\) 0 0
\(383\) 18.0000 0.919757 0.459879 0.887982i \(-0.347893\pi\)
0.459879 + 0.887982i \(0.347893\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.00000 0.101666
\(388\) −10.0000 −0.507673
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) 0 0
\(393\) 3.00000 0.151330
\(394\) 0 0
\(395\) −33.0000 −1.66041
\(396\) 0 0
\(397\) −1.00000 −0.0501886 −0.0250943 0.999685i \(-0.507989\pi\)
−0.0250943 + 0.999685i \(0.507989\pi\)
\(398\) 0 0
\(399\) 4.00000 0.200250
\(400\) 16.0000 0.800000
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) 40.0000 1.99254
\(404\) 30.0000 1.49256
\(405\) −3.00000 −0.149071
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 38.0000 1.87898 0.939490 0.342578i \(-0.111300\pi\)
0.939490 + 0.342578i \(0.111300\pi\)
\(410\) 0 0
\(411\) −18.0000 −0.887875
\(412\) 8.00000 0.394132
\(413\) 36.0000 1.77144
\(414\) 0 0
\(415\) −45.0000 −2.20896
\(416\) 0 0
\(417\) 8.00000 0.391762
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) −24.0000 −1.17108
\(421\) −16.0000 −0.779792 −0.389896 0.920859i \(-0.627489\pi\)
−0.389896 + 0.920859i \(0.627489\pi\)
\(422\) 0 0
\(423\) −3.00000 −0.145865
\(424\) 0 0
\(425\) 12.0000 0.582086
\(426\) 0 0
\(427\) 4.00000 0.193574
\(428\) 30.0000 1.45010
\(429\) 0 0
\(430\) 0 0
\(431\) −3.00000 −0.144505 −0.0722525 0.997386i \(-0.523019\pi\)
−0.0722525 + 0.997386i \(0.523019\pi\)
\(432\) 4.00000 0.192450
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 0 0
\(435\) 18.0000 0.863034
\(436\) −10.0000 −0.478913
\(437\) −6.00000 −0.287019
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 0 0
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 14.0000 0.664411
\(445\) 54.0000 2.55985
\(446\) 0 0
\(447\) 0 0
\(448\) 32.0000 1.51186
\(449\) 27.0000 1.27421 0.637104 0.770778i \(-0.280132\pi\)
0.637104 + 0.770778i \(0.280132\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 12.0000 0.564433
\(453\) −10.0000 −0.469841
\(454\) 0 0
\(455\) −48.0000 −2.25027
\(456\) 0 0
\(457\) 5.00000 0.233890 0.116945 0.993138i \(-0.462690\pi\)
0.116945 + 0.993138i \(0.462690\pi\)
\(458\) 0 0
\(459\) 3.00000 0.140028
\(460\) 36.0000 1.67851
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) −19.0000 −0.883005 −0.441502 0.897260i \(-0.645554\pi\)
−0.441502 + 0.897260i \(0.645554\pi\)
\(464\) −24.0000 −1.11417
\(465\) 30.0000 1.39122
\(466\) 0 0
\(467\) −15.0000 −0.694117 −0.347059 0.937843i \(-0.612820\pi\)
−0.347059 + 0.937843i \(0.612820\pi\)
\(468\) 8.00000 0.369800
\(469\) 52.0000 2.40114
\(470\) 0 0
\(471\) 2.00000 0.0921551
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 24.0000 1.10004
\(477\) 9.00000 0.412082
\(478\) 0 0
\(479\) −42.0000 −1.91903 −0.959514 0.281659i \(-0.909115\pi\)
−0.959514 + 0.281659i \(0.909115\pi\)
\(480\) 0 0
\(481\) 28.0000 1.27669
\(482\) 0 0
\(483\) −24.0000 −1.09204
\(484\) 22.0000 1.00000
\(485\) −15.0000 −0.681115
\(486\) 0 0
\(487\) −1.00000 −0.0453143 −0.0226572 0.999743i \(-0.507213\pi\)
−0.0226572 + 0.999743i \(0.507213\pi\)
\(488\) 0 0
\(489\) 8.00000 0.361773
\(490\) 0 0
\(491\) −9.00000 −0.406164 −0.203082 0.979162i \(-0.565096\pi\)
−0.203082 + 0.979162i \(0.565096\pi\)
\(492\) 0 0
\(493\) −18.0000 −0.810679
\(494\) 0 0
\(495\) 0 0
\(496\) −40.0000 −1.79605
\(497\) −48.0000 −2.15309
\(498\) 0 0
\(499\) −13.0000 −0.581960 −0.290980 0.956729i \(-0.593981\pi\)
−0.290980 + 0.956729i \(0.593981\pi\)
\(500\) −6.00000 −0.268328
\(501\) 24.0000 1.07224
\(502\) 0 0
\(503\) 18.0000 0.802580 0.401290 0.915951i \(-0.368562\pi\)
0.401290 + 0.915951i \(0.368562\pi\)
\(504\) 0 0
\(505\) 45.0000 2.00247
\(506\) 0 0
\(507\) 3.00000 0.133235
\(508\) −22.0000 −0.976092
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) −4.00000 −0.176950
\(512\) 0 0
\(513\) −1.00000 −0.0441511
\(514\) 0 0
\(515\) 12.0000 0.528783
\(516\) −4.00000 −0.176090
\(517\) 0 0
\(518\) 0 0
\(519\) −18.0000 −0.790112
\(520\) 0 0
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 0 0
\(523\) −7.00000 −0.306089 −0.153044 0.988219i \(-0.548908\pi\)
−0.153044 + 0.988219i \(0.548908\pi\)
\(524\) −6.00000 −0.262111
\(525\) −16.0000 −0.698297
\(526\) 0 0
\(527\) −30.0000 −1.30682
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) −9.00000 −0.390567
\(532\) −8.00000 −0.346844
\(533\) 0 0
\(534\) 0 0
\(535\) 45.0000 1.94552
\(536\) 0 0
\(537\) 9.00000 0.388379
\(538\) 0 0
\(539\) 0 0
\(540\) 6.00000 0.258199
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) 0 0
\(543\) −10.0000 −0.429141
\(544\) 0 0
\(545\) −15.0000 −0.642529
\(546\) 0 0
\(547\) 35.0000 1.49649 0.748246 0.663421i \(-0.230896\pi\)
0.748246 + 0.663421i \(0.230896\pi\)
\(548\) 36.0000 1.53784
\(549\) −1.00000 −0.0426790
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) −44.0000 −1.87107
\(554\) 0 0
\(555\) 21.0000 0.891400
\(556\) −16.0000 −0.678551
\(557\) 12.0000 0.508456 0.254228 0.967144i \(-0.418179\pi\)
0.254228 + 0.967144i \(0.418179\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 48.0000 2.02837
\(561\) 0 0
\(562\) 0 0
\(563\) 3.00000 0.126435 0.0632175 0.998000i \(-0.479864\pi\)
0.0632175 + 0.998000i \(0.479864\pi\)
\(564\) 6.00000 0.252646
\(565\) 18.0000 0.757266
\(566\) 0 0
\(567\) −4.00000 −0.167984
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 2.00000 0.0836974 0.0418487 0.999124i \(-0.486675\pi\)
0.0418487 + 0.999124i \(0.486675\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 24.0000 1.00087
\(576\) −8.00000 −0.333333
\(577\) 20.0000 0.832611 0.416305 0.909225i \(-0.363325\pi\)
0.416305 + 0.909225i \(0.363325\pi\)
\(578\) 0 0
\(579\) 14.0000 0.581820
\(580\) −36.0000 −1.49482
\(581\) −60.0000 −2.48922
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 12.0000 0.496139
\(586\) 0 0
\(587\) −24.0000 −0.990586 −0.495293 0.868726i \(-0.664939\pi\)
−0.495293 + 0.868726i \(0.664939\pi\)
\(588\) −18.0000 −0.742307
\(589\) 10.0000 0.412043
\(590\) 0 0
\(591\) 6.00000 0.246807
\(592\) −28.0000 −1.15079
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 36.0000 1.47586
\(596\) 0 0
\(597\) −10.0000 −0.409273
\(598\) 0 0
\(599\) 9.00000 0.367730 0.183865 0.982952i \(-0.441139\pi\)
0.183865 + 0.982952i \(0.441139\pi\)
\(600\) 0 0
\(601\) −16.0000 −0.652654 −0.326327 0.945257i \(-0.605811\pi\)
−0.326327 + 0.945257i \(0.605811\pi\)
\(602\) 0 0
\(603\) −13.0000 −0.529401
\(604\) 20.0000 0.813788
\(605\) 33.0000 1.34164
\(606\) 0 0
\(607\) −19.0000 −0.771186 −0.385593 0.922669i \(-0.626003\pi\)
−0.385593 + 0.922669i \(0.626003\pi\)
\(608\) 0 0
\(609\) 24.0000 0.972529
\(610\) 0 0
\(611\) 12.0000 0.485468
\(612\) −6.00000 −0.242536
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 21.0000 0.845428 0.422714 0.906263i \(-0.361077\pi\)
0.422714 + 0.906263i \(0.361077\pi\)
\(618\) 0 0
\(619\) −28.0000 −1.12542 −0.562708 0.826656i \(-0.690240\pi\)
−0.562708 + 0.826656i \(0.690240\pi\)
\(620\) −60.0000 −2.40966
\(621\) 6.00000 0.240772
\(622\) 0 0
\(623\) 72.0000 2.88462
\(624\) −16.0000 −0.640513
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 0 0
\(628\) −4.00000 −0.159617
\(629\) −21.0000 −0.837325
\(630\) 0 0
\(631\) 14.0000 0.557331 0.278666 0.960388i \(-0.410108\pi\)
0.278666 + 0.960388i \(0.410108\pi\)
\(632\) 0 0
\(633\) −1.00000 −0.0397464
\(634\) 0 0
\(635\) −33.0000 −1.30957
\(636\) −18.0000 −0.713746
\(637\) −36.0000 −1.42637
\(638\) 0 0
\(639\) 12.0000 0.474713
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) 48.0000 1.89146
\(645\) −6.00000 −0.236250
\(646\) 0 0
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 40.0000 1.56772
\(652\) −16.0000 −0.626608
\(653\) −24.0000 −0.939193 −0.469596 0.882881i \(-0.655601\pi\)
−0.469596 + 0.882881i \(0.655601\pi\)
\(654\) 0 0
\(655\) −9.00000 −0.351659
\(656\) 0 0
\(657\) 1.00000 0.0390137
\(658\) 0 0
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 0 0
\(663\) −12.0000 −0.466041
\(664\) 0 0
\(665\) −12.0000 −0.465340
\(666\) 0 0
\(667\) −36.0000 −1.39393
\(668\) −48.0000 −1.85718
\(669\) 20.0000 0.773245
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 47.0000 1.81172 0.905858 0.423581i \(-0.139227\pi\)
0.905858 + 0.423581i \(0.139227\pi\)
\(674\) 0 0
\(675\) 4.00000 0.153960
\(676\) −6.00000 −0.230769
\(677\) −42.0000 −1.61419 −0.807096 0.590421i \(-0.798962\pi\)
−0.807096 + 0.590421i \(0.798962\pi\)
\(678\) 0 0
\(679\) −20.0000 −0.767530
\(680\) 0 0
\(681\) 30.0000 1.14960
\(682\) 0 0
\(683\) −3.00000 −0.114792 −0.0573959 0.998351i \(-0.518280\pi\)
−0.0573959 + 0.998351i \(0.518280\pi\)
\(684\) 2.00000 0.0764719
\(685\) 54.0000 2.06323
\(686\) 0 0
\(687\) −16.0000 −0.610438
\(688\) 8.00000 0.304997
\(689\) −36.0000 −1.37149
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) 36.0000 1.36851
\(693\) 0 0
\(694\) 0 0
\(695\) −24.0000 −0.910372
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 3.00000 0.113470
\(700\) 32.0000 1.20949
\(701\) 21.0000 0.793159 0.396580 0.918000i \(-0.370197\pi\)
0.396580 + 0.918000i \(0.370197\pi\)
\(702\) 0 0
\(703\) 7.00000 0.264010
\(704\) 0 0
\(705\) 9.00000 0.338960
\(706\) 0 0
\(707\) 60.0000 2.25653
\(708\) 18.0000 0.676481
\(709\) −28.0000 −1.05156 −0.525781 0.850620i \(-0.676227\pi\)
−0.525781 + 0.850620i \(0.676227\pi\)
\(710\) 0 0
\(711\) 11.0000 0.412532
\(712\) 0 0
\(713\) −60.0000 −2.24702
\(714\) 0 0
\(715\) 0 0
\(716\) −18.0000 −0.672692
\(717\) 3.00000 0.112037
\(718\) 0 0
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) −12.0000 −0.447214
\(721\) 16.0000 0.595871
\(722\) 0 0
\(723\) −28.0000 −1.04133
\(724\) 20.0000 0.743294
\(725\) −24.0000 −0.891338
\(726\) 0 0
\(727\) −19.0000 −0.704671 −0.352335 0.935874i \(-0.614612\pi\)
−0.352335 + 0.935874i \(0.614612\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 6.00000 0.221918
\(732\) 2.00000 0.0739221
\(733\) −25.0000 −0.923396 −0.461698 0.887037i \(-0.652760\pi\)
−0.461698 + 0.887037i \(0.652760\pi\)
\(734\) 0 0
\(735\) −27.0000 −0.995910
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 41.0000 1.50821 0.754105 0.656754i \(-0.228071\pi\)
0.754105 + 0.656754i \(0.228071\pi\)
\(740\) −42.0000 −1.54395
\(741\) 4.00000 0.146944
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 15.0000 0.548821
\(748\) 0 0
\(749\) 60.0000 2.19235
\(750\) 0 0
\(751\) 38.0000 1.38664 0.693320 0.720630i \(-0.256147\pi\)
0.693320 + 0.720630i \(0.256147\pi\)
\(752\) −12.0000 −0.437595
\(753\) −12.0000 −0.437304
\(754\) 0 0
\(755\) 30.0000 1.09181
\(756\) 8.00000 0.290957
\(757\) 11.0000 0.399802 0.199901 0.979816i \(-0.435938\pi\)
0.199901 + 0.979816i \(0.435938\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 54.0000 1.95750 0.978749 0.205061i \(-0.0657392\pi\)
0.978749 + 0.205061i \(0.0657392\pi\)
\(762\) 0 0
\(763\) −20.0000 −0.724049
\(764\) 0 0
\(765\) −9.00000 −0.325396
\(766\) 0 0
\(767\) 36.0000 1.29988
\(768\) 16.0000 0.577350
\(769\) 26.0000 0.937584 0.468792 0.883309i \(-0.344689\pi\)
0.468792 + 0.883309i \(0.344689\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) −28.0000 −1.00774
\(773\) −21.0000 −0.755318 −0.377659 0.925945i \(-0.623271\pi\)
−0.377659 + 0.925945i \(0.623271\pi\)
\(774\) 0 0
\(775\) −40.0000 −1.43684
\(776\) 0 0
\(777\) 28.0000 1.00449
\(778\) 0 0
\(779\) 0 0
\(780\) −24.0000 −0.859338
\(781\) 0 0
\(782\) 0 0
\(783\) −6.00000 −0.214423
\(784\) 36.0000 1.28571
\(785\) −6.00000 −0.214149
\(786\) 0 0
\(787\) 23.0000 0.819861 0.409931 0.912117i \(-0.365553\pi\)
0.409931 + 0.912117i \(0.365553\pi\)
\(788\) −12.0000 −0.427482
\(789\) −9.00000 −0.320408
\(790\) 0 0
\(791\) 24.0000 0.853342
\(792\) 0 0
\(793\) 4.00000 0.142044
\(794\) 0 0
\(795\) −27.0000 −0.957591
\(796\) 20.0000 0.708881
\(797\) 30.0000 1.06265 0.531327 0.847167i \(-0.321693\pi\)
0.531327 + 0.847167i \(0.321693\pi\)
\(798\) 0 0
\(799\) −9.00000 −0.318397
\(800\) 0 0
\(801\) −18.0000 −0.635999
\(802\) 0 0
\(803\) 0 0
\(804\) 26.0000 0.916949
\(805\) 72.0000 2.53767
\(806\) 0 0
\(807\) 6.00000 0.211210
\(808\) 0 0
\(809\) −12.0000 −0.421898 −0.210949 0.977497i \(-0.567655\pi\)
−0.210949 + 0.977497i \(0.567655\pi\)
\(810\) 0 0
\(811\) 5.00000 0.175574 0.0877869 0.996139i \(-0.472021\pi\)
0.0877869 + 0.996139i \(0.472021\pi\)
\(812\) −48.0000 −1.68447
\(813\) 20.0000 0.701431
\(814\) 0 0
\(815\) −24.0000 −0.840683
\(816\) 12.0000 0.420084
\(817\) −2.00000 −0.0699711
\(818\) 0 0
\(819\) 16.0000 0.559085
\(820\) 0 0
\(821\) 24.0000 0.837606 0.418803 0.908077i \(-0.362450\pi\)
0.418803 + 0.908077i \(0.362450\pi\)
\(822\) 0 0
\(823\) −28.0000 −0.976019 −0.488009 0.872838i \(-0.662277\pi\)
−0.488009 + 0.872838i \(0.662277\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18.0000 −0.625921 −0.312961 0.949766i \(-0.601321\pi\)
−0.312961 + 0.949766i \(0.601321\pi\)
\(828\) −12.0000 −0.417029
\(829\) −40.0000 −1.38926 −0.694629 0.719368i \(-0.744431\pi\)
−0.694629 + 0.719368i \(0.744431\pi\)
\(830\) 0 0
\(831\) −10.0000 −0.346896
\(832\) 32.0000 1.10940
\(833\) 27.0000 0.935495
\(834\) 0 0
\(835\) −72.0000 −2.49166
\(836\) 0 0
\(837\) −10.0000 −0.345651
\(838\) 0 0
\(839\) 18.0000 0.621429 0.310715 0.950503i \(-0.399432\pi\)
0.310715 + 0.950503i \(0.399432\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 15.0000 0.516627
\(844\) 2.00000 0.0688428
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) 44.0000 1.51186
\(848\) 36.0000 1.23625
\(849\) −28.0000 −0.960958
\(850\) 0 0
\(851\) −42.0000 −1.43974
\(852\) −24.0000 −0.822226
\(853\) 17.0000 0.582069 0.291034 0.956713i \(-0.406001\pi\)
0.291034 + 0.956713i \(0.406001\pi\)
\(854\) 0 0
\(855\) 3.00000 0.102598
\(856\) 0 0
\(857\) 36.0000 1.22974 0.614868 0.788630i \(-0.289209\pi\)
0.614868 + 0.788630i \(0.289209\pi\)
\(858\) 0 0
\(859\) 44.0000 1.50126 0.750630 0.660722i \(-0.229750\pi\)
0.750630 + 0.660722i \(0.229750\pi\)
\(860\) 12.0000 0.409197
\(861\) 0 0
\(862\) 0 0
\(863\) 45.0000 1.53182 0.765909 0.642949i \(-0.222289\pi\)
0.765909 + 0.642949i \(0.222289\pi\)
\(864\) 0 0
\(865\) 54.0000 1.83606
\(866\) 0 0
\(867\) −8.00000 −0.271694
\(868\) −80.0000 −2.71538
\(869\) 0 0
\(870\) 0 0
\(871\) 52.0000 1.76195
\(872\) 0 0
\(873\) 5.00000 0.169224
\(874\) 0 0
\(875\) −12.0000 −0.405674
\(876\) −2.00000 −0.0675737
\(877\) 38.0000 1.28317 0.641584 0.767052i \(-0.278277\pi\)
0.641584 + 0.767052i \(0.278277\pi\)
\(878\) 0 0
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) 39.0000 1.31394 0.656972 0.753915i \(-0.271837\pi\)
0.656972 + 0.753915i \(0.271837\pi\)
\(882\) 0 0
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) 24.0000 0.807207
\(885\) 27.0000 0.907595
\(886\) 0 0
\(887\) 3.00000 0.100730 0.0503651 0.998731i \(-0.483962\pi\)
0.0503651 + 0.998731i \(0.483962\pi\)
\(888\) 0 0
\(889\) −44.0000 −1.47571
\(890\) 0 0
\(891\) 0 0
\(892\) −40.0000 −1.33930
\(893\) 3.00000 0.100391
\(894\) 0 0
\(895\) −27.0000 −0.902510
\(896\) 0 0
\(897\) −24.0000 −0.801337
\(898\) 0 0
\(899\) 60.0000 2.00111
\(900\) −8.00000 −0.266667
\(901\) 27.0000 0.899500
\(902\) 0 0
\(903\) −8.00000 −0.266223
\(904\) 0 0
\(905\) 30.0000 0.997234
\(906\) 0 0
\(907\) −34.0000 −1.12895 −0.564476 0.825450i \(-0.690922\pi\)
−0.564476 + 0.825450i \(0.690922\pi\)
\(908\) −60.0000 −1.99117
\(909\) −15.0000 −0.497519
\(910\) 0 0
\(911\) 18.0000 0.596367 0.298183 0.954509i \(-0.403619\pi\)
0.298183 + 0.954509i \(0.403619\pi\)
\(912\) −4.00000 −0.132453
\(913\) 0 0
\(914\) 0 0
\(915\) 3.00000 0.0991769
\(916\) 32.0000 1.05731
\(917\) −12.0000 −0.396275
\(918\) 0 0
\(919\) −34.0000 −1.12156 −0.560778 0.827966i \(-0.689498\pi\)
−0.560778 + 0.827966i \(0.689498\pi\)
\(920\) 0 0
\(921\) −16.0000 −0.527218
\(922\) 0 0
\(923\) −48.0000 −1.57994
\(924\) 0 0
\(925\) −28.0000 −0.920634
\(926\) 0 0
\(927\) −4.00000 −0.131377
\(928\) 0 0
\(929\) −18.0000 −0.590561 −0.295280 0.955411i \(-0.595413\pi\)
−0.295280 + 0.955411i \(0.595413\pi\)
\(930\) 0 0
\(931\) −9.00000 −0.294963
\(932\) −6.00000 −0.196537
\(933\) 30.0000 0.982156
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −37.0000 −1.20874 −0.604369 0.796705i \(-0.706575\pi\)
−0.604369 + 0.796705i \(0.706575\pi\)
\(938\) 0 0
\(939\) 8.00000 0.261070
\(940\) −18.0000 −0.587095
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −36.0000 −1.17170
\(945\) 12.0000 0.390360
\(946\) 0 0
\(947\) 30.0000 0.974869 0.487435 0.873160i \(-0.337933\pi\)
0.487435 + 0.873160i \(0.337933\pi\)
\(948\) −22.0000 −0.714527
\(949\) −4.00000 −0.129845
\(950\) 0 0
\(951\) 30.0000 0.972817
\(952\) 0 0
\(953\) 30.0000 0.971795 0.485898 0.874016i \(-0.338493\pi\)
0.485898 + 0.874016i \(0.338493\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −6.00000 −0.194054
\(957\) 0 0
\(958\) 0 0
\(959\) 72.0000 2.32500
\(960\) 24.0000 0.774597
\(961\) 69.0000 2.22581
\(962\) 0 0
\(963\) −15.0000 −0.483368
\(964\) 56.0000 1.80364
\(965\) −42.0000 −1.35203
\(966\) 0 0
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) 0 0
\(969\) −3.00000 −0.0963739
\(970\) 0 0
\(971\) −15.0000 −0.481373 −0.240686 0.970603i \(-0.577373\pi\)
−0.240686 + 0.970603i \(0.577373\pi\)
\(972\) −2.00000 −0.0641500
\(973\) −32.0000 −1.02587
\(974\) 0 0
\(975\) −16.0000 −0.512410
\(976\) −4.00000 −0.128037
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 54.0000 1.72497
\(981\) 5.00000 0.159638
\(982\) 0 0
\(983\) −15.0000 −0.478426 −0.239213 0.970967i \(-0.576889\pi\)
−0.239213 + 0.970967i \(0.576889\pi\)
\(984\) 0 0
\(985\) −18.0000 −0.573528
\(986\) 0 0
\(987\) 12.0000 0.381964
\(988\) −8.00000 −0.254514
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) 2.00000 0.0635321 0.0317660 0.999495i \(-0.489887\pi\)
0.0317660 + 0.999495i \(0.489887\pi\)
\(992\) 0 0
\(993\) 8.00000 0.253872
\(994\) 0 0
\(995\) 30.0000 0.951064
\(996\) −30.0000 −0.950586
\(997\) −46.0000 −1.45683 −0.728417 0.685134i \(-0.759744\pi\)
−0.728417 + 0.685134i \(0.759744\pi\)
\(998\) 0 0
\(999\) −7.00000 −0.221470
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 219.2.a.b.1.1 1
3.2 odd 2 657.2.a.c.1.1 1
4.3 odd 2 3504.2.a.c.1.1 1
5.4 even 2 5475.2.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
219.2.a.b.1.1 1 1.1 even 1 trivial
657.2.a.c.1.1 1 3.2 odd 2
3504.2.a.c.1.1 1 4.3 odd 2
5475.2.a.e.1.1 1 5.4 even 2