Properties

Label 2-2088-1.1-c1-0-3
Degree $2$
Conductor $2088$
Sign $1$
Analytic cond. $16.6727$
Root an. cond. $4.08322$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·7-s + 2·13-s − 6·17-s + 4·23-s − 25-s − 29-s + 6·31-s + 8·35-s + 4·37-s − 6·41-s + 4·43-s + 9·49-s + 2·53-s − 2·59-s − 4·65-s + 12·67-s + 14·73-s + 10·79-s + 6·83-s + 12·85-s + 6·89-s − 8·91-s + 2·97-s + 10·101-s + 16·103-s − 6·107-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.51·7-s + 0.554·13-s − 1.45·17-s + 0.834·23-s − 1/5·25-s − 0.185·29-s + 1.07·31-s + 1.35·35-s + 0.657·37-s − 0.937·41-s + 0.609·43-s + 9/7·49-s + 0.274·53-s − 0.260·59-s − 0.496·65-s + 1.46·67-s + 1.63·73-s + 1.12·79-s + 0.658·83-s + 1.30·85-s + 0.635·89-s − 0.838·91-s + 0.203·97-s + 0.995·101-s + 1.57·103-s − 0.580·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2088 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2088 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2088\)    =    \(2^{3} \cdot 3^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(16.6727\)
Root analytic conductor: \(4.08322\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2088,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9089969718\)
\(L(\frac12)\) \(\approx\) \(0.9089969718\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
29 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.106225363181316348178210347859, −8.399677141320715672839793538349, −7.52043856670607732679232521565, −6.61702591112359586751690983464, −6.28137091025114493851163801786, −5.00674246954936362071730692498, −4.02625653879928883131179215294, −3.39626721380068378961545581487, −2.40120939874958364919050027678, −0.60369033234400906253951676774, 0.60369033234400906253951676774, 2.40120939874958364919050027678, 3.39626721380068378961545581487, 4.02625653879928883131179215294, 5.00674246954936362071730692498, 6.28137091025114493851163801786, 6.61702591112359586751690983464, 7.52043856670607732679232521565, 8.399677141320715672839793538349, 9.106225363181316348178210347859

Graph of the $Z$-function along the critical line