L(s) = 1 | + 2·3-s − 2·5-s − 9-s − 4·11-s − 4·13-s − 4·15-s + 4·17-s − 14·23-s + 3·25-s − 6·27-s − 10·29-s + 4·31-s − 8·33-s − 8·39-s − 6·41-s + 6·43-s + 2·45-s − 12·47-s + 8·51-s + 8·55-s + 8·59-s − 2·61-s + 8·65-s − 6·67-s − 28·69-s − 24·71-s + 4·73-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.894·5-s − 1/3·9-s − 1.20·11-s − 1.10·13-s − 1.03·15-s + 0.970·17-s − 2.91·23-s + 3/5·25-s − 1.15·27-s − 1.85·29-s + 0.718·31-s − 1.39·33-s − 1.28·39-s − 0.937·41-s + 0.914·43-s + 0.298·45-s − 1.75·47-s + 1.12·51-s + 1.07·55-s + 1.04·59-s − 0.256·61-s + 0.992·65-s − 0.733·67-s − 3.37·69-s − 2.84·71-s + 0.468·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3841600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3841600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.756695762399085299275253108086, −8.619317018660247823745416537693, −8.060495892957879077127709056661, −7.79314431319499445826951175320, −7.58051557297763597212313521009, −7.52086004847455421744693340558, −6.60798012782247883720386075574, −6.26712608188395108020021832776, −5.57402492917759257637210691215, −5.50565187954816685475120150630, −4.86710536399246228016371647026, −4.41238527346293617996991422389, −3.77179814689222658238399266736, −3.59707277010430743651647565967, −3.01806601408796427452784010423, −2.53357739766442948989820418891, −2.21021868661513404253991244374, −1.51676762360876229218550540439, 0, 0,
1.51676762360876229218550540439, 2.21021868661513404253991244374, 2.53357739766442948989820418891, 3.01806601408796427452784010423, 3.59707277010430743651647565967, 3.77179814689222658238399266736, 4.41238527346293617996991422389, 4.86710536399246228016371647026, 5.50565187954816685475120150630, 5.57402492917759257637210691215, 6.26712608188395108020021832776, 6.60798012782247883720386075574, 7.52086004847455421744693340558, 7.58051557297763597212313521009, 7.79314431319499445826951175320, 8.060495892957879077127709056661, 8.619317018660247823745416537693, 8.756695762399085299275253108086