Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 42 x^{2} + 1369 x^{4}$ |
Frobenius angles: | $\pm0.346057717860$, $\pm0.653942282140$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{2}, \sqrt{-29})\) |
Galois group: | $C_2^2$ |
Jacobians: | $83$ |
Isomorphism classes: | 126 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1412$ | $1993744$ | $2565628004$ | $3516135018496$ | $4808584389550532$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $38$ | $1454$ | $50654$ | $1876110$ | $69343958$ | $2565529598$ | $94931877134$ | $3512485053214$ | $129961739795078$ | $4808584406683214$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 83 curves (of which all are hyperelliptic):
- $y^2=30 x^6+26 x^5+33 x^4+6 x^3+33 x^2+19 x+5$
- $y^2=23 x^6+15 x^5+29 x^4+12 x^3+29 x^2+x+10$
- $y^2=32 x^5+3 x^4+28 x^3+32 x^2+4 x+17$
- $y^2=27 x^5+6 x^4+19 x^3+27 x^2+8 x+34$
- $y^2=29 x^6+22 x^5+8 x^4+17 x^3+33 x^2+30 x+19$
- $y^2=21 x^6+7 x^5+16 x^4+34 x^3+29 x^2+23 x+1$
- $y^2=13 x^6+23 x^5+20 x^4+11 x^3+35 x^2+11 x+4$
- $y^2=26 x^6+9 x^5+3 x^4+22 x^3+33 x^2+22 x+8$
- $y^2=28 x^6+3 x^5+7 x^4+18 x^3+22 x^2+24 x+8$
- $y^2=19 x^6+6 x^5+14 x^4+36 x^3+7 x^2+11 x+16$
- $y^2=35 x^6+8 x^5+3 x^4+32 x^2+18 x+36$
- $y^2=33 x^6+16 x^5+6 x^4+27 x^2+36 x+35$
- $y^2=19 x^6+25 x^5+6 x^4+35 x^3+29 x^2+10 x+32$
- $y^2=x^6+13 x^5+12 x^4+33 x^3+21 x^2+20 x+27$
- $y^2=12 x^6+x^5+12 x^4+5 x^3+6 x^2+29 x+31$
- $y^2=9 x^6+28 x^5+27 x^4+28 x^3+32 x^2+7 x+15$
- $y^2=30 x^6+31 x^5+25 x^4+12 x^2+12 x+11$
- $y^2=23 x^6+25 x^5+13 x^4+24 x^2+24 x+22$
- $y^2=14 x^6+36 x^5+13 x^4+31 x^3+27 x^2+x+18$
- $y^2=28 x^6+35 x^5+26 x^4+25 x^3+17 x^2+2 x+36$
- and 63 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{2}}$.
Endomorphism algebra over $\F_{37}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-29})\). |
The base change of $A$ to $\F_{37^{2}}$ is 1.1369.bq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-58}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.37.a_abq | $4$ | (not in LMFDB) |
2.37.ai_bg | $8$ | (not in LMFDB) |
2.37.i_bg | $8$ | (not in LMFDB) |