Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 10 x + 75 x^{2} + 290 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.564622382094$, $\pm0.759017030091$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.389696.1 |
Galois group: | $D_{4}$ |
Jacobians: | $21$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1217$ | $750889$ | $585639872$ | $500609436521$ | $420716448591577$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $40$ | $892$ | $24010$ | $707796$ | $20511600$ | $594848422$ | $17249762080$ | $500245109988$ | $14507159915410$ | $420707203645452$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 21 curves (of which all are hyperelliptic):
- $y^2=6 x^6+25 x^5+5 x^4+17 x^3+16 x^2+23 x+21$
- $y^2=22 x^6+17 x^4+10 x^2+11 x+4$
- $y^2=12 x^6+27 x^5+19 x^4+2 x^3+7 x^2+24 x+16$
- $y^2=18 x^6+23 x^5+6 x^4+18 x^3+26 x^2+16 x+1$
- $y^2=16 x^6+11 x^5+27 x^4+11 x^3+4 x^2+14 x+10$
- $y^2=x^6+9 x^5+13 x^4+13 x^2+20 x+25$
- $y^2=14 x^6+24 x^5+5 x^4+10 x^3+7 x^2+7 x+11$
- $y^2=22 x^6+13 x^5+23 x^4+2 x^3+8 x^2+7 x+13$
- $y^2=16 x^6+14 x^5+26 x^4+8 x^3+9 x^2+12 x+6$
- $y^2=17 x^6+28 x^5+x^4+18 x^3+13 x^2+13 x+25$
- $y^2=20 x^6+14 x^5+25 x^4+6 x^3+28 x^2+9 x+15$
- $y^2=17 x^6+18 x^5+24 x^4+23 x^3+12 x^2+15 x+23$
- $y^2=3 x^6+8 x^5+3 x^4+8 x^3+6 x+10$
- $y^2=7 x^6+10 x^5+28 x^4+5 x^3+12 x^2+28 x+21$
- $y^2=16 x^6+20 x^5+24 x^4+27 x^3+28 x^2+7 x+16$
- $y^2=16 x^6+16 x^5+10 x^4+26 x^3+7 x^2+28 x+22$
- $y^2=20 x^6+x^5+7 x^4+21 x^3+3 x^2+11 x+17$
- $y^2=5 x^6+11 x^5+12 x^4+10 x^3+22 x^2+9 x+7$
- $y^2=14 x^6+19 x^5+25 x^4+15 x^3+4 x^2+2 x+24$
- $y^2=x^6+15 x^5+7 x^4+12 x^3+26 x^2+x+7$
- $y^2=6 x^6+13 x^5+17 x^4+5 x^3+26 x^2+25 x+1$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is 4.0.389696.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.ak_cx | $2$ | (not in LMFDB) |