Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 6 x + 83 x^{2} + 246 x^{3} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.504264713155$, $\pm0.650404962574$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1364544.1 |
Galois group: | $D_{4}$ |
Jacobians: | $48$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2017$ | $3051721$ | $4713035152$ | $7978422434121$ | $13424578837502737$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $1812$ | $68382$ | $2823460$ | $115872768$ | $4750110222$ | $194754337056$ | $7984924148164$ | $327381906317742$ | $13422659542736052$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=15 x^6+9 x^5+37 x^4+6 x^3+9 x^2+34 x+11$
- $y^2=31 x^6+35 x^4+23 x^2+31 x+4$
- $y^2=25 x^6+32 x^5+5 x^4+24 x^3+21 x^2+2 x+13$
- $y^2=23 x^6+x^5+18 x^4+13 x^3+31 x^2+40 x+33$
- $y^2=38 x^6+29 x^5+4 x^4+19 x^3+7 x^2+22 x+13$
- $y^2=20 x^6+34 x^5+16 x^4+11 x^3+12 x^2+7 x+12$
- $y^2=16 x^6+31 x^5+11 x^4+7 x^3+33 x^2+x+35$
- $y^2=3 x^6+31 x^5+31 x^4+11 x^3+28 x^2+25 x+23$
- $y^2=20 x^6+23 x^5+37 x^4+30 x^3+27 x^2+5 x+40$
- $y^2=29 x^6+33 x^5+20 x^4+31 x^3+10 x^2+14 x+37$
- $y^2=25 x^6+22 x^5+27 x^4+12 x^3+28 x^2+30 x+9$
- $y^2=x^6+39 x^5+5 x^4+21 x^3+12 x^2+24 x+30$
- $y^2=31 x^6+36 x^5+35 x^4+22 x^3+12 x^2+24 x+3$
- $y^2=32 x^6+39 x^5+39 x^4+20 x^3+33 x^2+16 x+28$
- $y^2=12 x^6+37 x^5+21 x^4+x^3+21 x^2+35 x+20$
- $y^2=24 x^6+9 x^5+3 x^4+13 x^3+20 x^2+38 x+14$
- $y^2=12 x^6+11 x^5+5 x^4+15 x^3+10 x^2+16 x+11$
- $y^2=36 x^6+4 x^5+18 x^4+11 x^3+32 x^2+14 x+33$
- $y^2=28 x^6+12 x^5+2 x^4+23 x^3+40 x^2+27 x+37$
- $y^2=40 x^6+19 x^5+40 x^4+12 x^3+37 x^2+20 x+15$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is 4.0.1364544.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.41.ag_df | $2$ | (not in LMFDB) |