Properties

Label 2.43.ag_ad
Base field $\F_{43}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $1 - 6 x - 3 x^{2} - 258 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.0577675548247$, $\pm0.676339342821$
Angle rank:  $2$ (numerical)
Number field:  4.0.44608.1
Galois group:  $D_{4}$
Jacobians:  $18$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1583$ $3341713$ $6238786628$ $11686347974569$ $21610581902070263$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $38$ $1808$ $78464$ $3418260$ $147002318$ $6321132974$ $271819002794$ $11688201359140$ $502592571568496$ $21611482600784288$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43}$.

Endomorphism algebra over $\F_{43}$
The endomorphism algebra of this simple isogeny class is 4.0.44608.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.g_ad$2$(not in LMFDB)