Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 6 x - 3 x^{2} - 258 x^{3} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.0577675548247$, $\pm0.676339342821$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.44608.1 |
Galois group: | $D_{4}$ |
Jacobians: | $18$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1583$ | $3341713$ | $6238786628$ | $11686347974569$ | $21610581902070263$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $38$ | $1808$ | $78464$ | $3418260$ | $147002318$ | $6321132974$ | $271819002794$ | $11688201359140$ | $502592571568496$ | $21611482600784288$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=20 x^6+33 x^5+12 x^4+25 x^3+19 x^2+2 x+6$
- $y^2=25 x^6+39 x^5+20 x^4+19 x^3+15 x^2+19 x+11$
- $y^2=37 x^6+35 x^5+23 x^4+4 x^3+17 x^2+5 x+6$
- $y^2=37 x^6+2 x^5+39 x^4+4 x^3+34 x^2+29 x+20$
- $y^2=4 x^6+35 x^5+10 x^4+7 x^3+12 x^2+40 x+5$
- $y^2=10 x^6+33 x^5+28 x^4+22 x^3+17 x^2+29 x+37$
- $y^2=34 x^6+x^5+41 x^4+2 x^3+12 x^2+39 x+42$
- $y^2=8 x^6+31 x^5+42 x^4+14 x^3+42 x^2+25 x+15$
- $y^2=25 x^6+10 x^5+31 x^4+40 x^3+28 x^2+31 x+4$
- $y^2=21 x^6+9 x^5+7 x^4+19 x^3+14 x^2+4 x+14$
- $y^2=7 x^6+11 x^5+13 x^4+13 x^3+25 x^2+31 x+38$
- $y^2=20 x^6+27 x^5+39 x^4+10 x^3+12 x^2+42 x+19$
- $y^2=32 x^6+30 x^5+x^4+9 x^3+4 x^2+23 x+3$
- $y^2=35 x^6+3 x^5+24 x^4+26 x^3+22 x^2+19 x+22$
- $y^2=28 x^6+27 x^5+36 x^4+33 x^3+28 x^2+11 x+11$
- $y^2=19 x^6+3 x^5+27 x^4+36 x^3+27 x^2+3 x+30$
- $y^2=13 x^6+42 x^5+30 x^4+28 x^3+4 x^2+34 x+40$
- $y^2=19 x^6+16 x^4+30 x^3+23 x^2+4 x+42$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is 4.0.44608.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.g_ad | $2$ | (not in LMFDB) |