L(s) = 1 | − 2-s + 3·3-s + 5-s − 3·6-s − 2·7-s + 8-s + 6·9-s − 10-s − 11-s + 13-s + 2·14-s + 3·15-s − 16-s + 10·17-s − 6·18-s + 6·19-s − 6·21-s + 22-s + 3·24-s − 26-s + 9·27-s − 8·29-s − 3·30-s − 6·31-s − 3·33-s − 10·34-s − 2·35-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.73·3-s + 0.447·5-s − 1.22·6-s − 0.755·7-s + 0.353·8-s + 2·9-s − 0.316·10-s − 0.301·11-s + 0.277·13-s + 0.534·14-s + 0.774·15-s − 1/4·16-s + 2.42·17-s − 1.41·18-s + 1.37·19-s − 1.30·21-s + 0.213·22-s + 0.612·24-s − 0.196·26-s + 1.73·27-s − 1.48·29-s − 0.547·30-s − 1.07·31-s − 0.522·33-s − 1.71·34-s − 0.338·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.961776133\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.961776133\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04813052320260542104036511816, −9.542733364060192697479540794926, −9.050189613719278429468195452912, −8.728944802199760953130258409130, −8.705762549498479129573308356160, −7.88181439842747759055738872485, −7.51040352647099975014178989990, −7.33639120206070033381945123611, −7.13771498889159458550506118884, −6.23337387612351573109090487188, −5.77299585749420895778709015082, −5.22731937787428209721603290473, −5.06591458243817935201487163011, −3.86820911471094054670068148027, −3.70789082175443550073615353591, −3.19682486438564950890669974157, −2.98278483395025105590938094060, −1.86347692023748648719539082093, −1.76990634322557225197324702088, −0.77997820214502987274995757428,
0.77997820214502987274995757428, 1.76990634322557225197324702088, 1.86347692023748648719539082093, 2.98278483395025105590938094060, 3.19682486438564950890669974157, 3.70789082175443550073615353591, 3.86820911471094054670068148027, 5.06591458243817935201487163011, 5.22731937787428209721603290473, 5.77299585749420895778709015082, 6.23337387612351573109090487188, 7.13771498889159458550506118884, 7.33639120206070033381945123611, 7.51040352647099975014178989990, 7.88181439842747759055738872485, 8.705762549498479129573308356160, 8.728944802199760953130258409130, 9.050189613719278429468195452912, 9.542733364060192697479540794926, 10.04813052320260542104036511816