Properties

Label 2.59.af_abi
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $1 - 5 x - 34 x^{2} - 295 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.0611433876487$, $\pm0.727810054315$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{-211})\)
Galois group:  $C_2^2$
Jacobians:  $21$
Isomorphism classes:  42

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3148$ $11798704$ $41869344400$ $146850870322624$ $511078667831860228$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $55$ $3389$ $203860$ $12119049$ $714871025$ $42180199958$ $2488653793835$ $146830416215569$ $8662995877231180$ $511116754709018429$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 21 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59^{3}}$.

Endomorphism algebra over $\F_{59}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-211})\).
Endomorphism algebra over $\overline{\F}_{59}$
The base change of $A$ to $\F_{59^{3}}$ is 1.205379.abdg 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-211}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.f_abi$2$(not in LMFDB)
2.59.k_fn$3$(not in LMFDB)
2.59.ak_fn$6$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.f_abi$2$(not in LMFDB)
2.59.k_fn$3$(not in LMFDB)
2.59.ak_fn$6$(not in LMFDB)
2.59.a_dp$6$(not in LMFDB)
2.59.f_abi$6$(not in LMFDB)
2.59.a_adp$12$(not in LMFDB)