Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 5 x - 34 x^{2} - 295 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.0611433876487$, $\pm0.727810054315$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-211})\) |
Galois group: | $C_2^2$ |
Jacobians: | $21$ |
Isomorphism classes: | 42 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3148$ | $11798704$ | $41869344400$ | $146850870322624$ | $511078667831860228$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $55$ | $3389$ | $203860$ | $12119049$ | $714871025$ | $42180199958$ | $2488653793835$ | $146830416215569$ | $8662995877231180$ | $511116754709018429$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 21 curves (of which all are hyperelliptic):
- $y^2=32 x^5+58 x^4+53 x^3+51 x+54$
- $y^2=58 x^6+47 x^5+25 x^4+43 x^3+48 x^2+13 x+31$
- $y^2=30 x^6+38 x^5+34 x^4+50 x^3+46 x^2+30 x+44$
- $y^2=17 x^5+45 x^4+20 x^3+50 x^2+38 x+38$
- $y^2=44 x^6+57 x^5+56 x^4+34 x^3+50 x^2+39 x+17$
- $y^2=3 x^6+21 x^5+27 x^4+50 x^3+21 x^2+8 x$
- $y^2=48 x^6+39 x^5+24 x^4+12 x^3+41 x^2+19 x+47$
- $y^2=12 x^6+26 x^5+49 x^4+3 x^3+6 x^2+11 x+13$
- $y^2=44 x^6+37 x^5+32 x^4+16 x^3+26 x^2+52 x+25$
- $y^2=42 x^6+11 x^5+8 x^4+17 x^3+17 x^2+35 x+20$
- $y^2=13 x^6+20 x^5+28 x^4+44 x^3+18 x+30$
- $y^2=38 x^6+19 x^5+14 x^4+58 x^3+3 x^2+13 x+15$
- $y^2=32 x^6+27 x^5+2 x^4+36 x^3+26 x^2+23 x+2$
- $y^2=47 x^6+46 x^5+23 x^4+54 x^3+3 x^2+6 x+4$
- $y^2=23 x^6+56 x^5+26 x^4+3 x^3+4 x^2+18 x+18$
- $y^2=14 x^6+15 x^5+28 x^4+53 x^3+28 x^2+46 x+52$
- $y^2=22 x^6+45 x^5+55 x^4+3 x^3+40 x^2+49 x+45$
- $y^2=x^6+52 x^5+15 x^4+4 x^3+24 x^2+26 x+58$
- $y^2=27 x^6+56 x^5+40 x^4+6 x^3+12 x^2+37 x+48$
- $y^2=55 x^6+31 x^5+30 x^4+41 x^3+17 x^2+33 x+29$
- $y^2=36 x^6+35 x^5+6 x^4+39 x^3+35 x^2+33 x+55$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{3}}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-211})\). |
The base change of $A$ to $\F_{59^{3}}$ is 1.205379.abdg 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-211}) \)$)$ |
Base change
This is a primitive isogeny class.