L(s) = 1 | + 3-s + 9-s + 4·11-s − 12·17-s + 4·19-s − 2·25-s + 27-s + 4·33-s + 12·41-s − 4·43-s + 6·49-s − 12·51-s + 4·57-s − 24·59-s − 16·67-s − 4·73-s − 2·75-s + 81-s − 12·83-s − 8·89-s + 4·97-s + 4·99-s + 16·107-s + 8·113-s − 6·121-s + 12·123-s + 127-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/3·9-s + 1.20·11-s − 2.91·17-s + 0.917·19-s − 2/5·25-s + 0.192·27-s + 0.696·33-s + 1.87·41-s − 0.609·43-s + 6/7·49-s − 1.68·51-s + 0.529·57-s − 3.12·59-s − 1.95·67-s − 0.468·73-s − 0.230·75-s + 1/9·81-s − 1.31·83-s − 0.847·89-s + 0.406·97-s + 0.402·99-s + 1.54·107-s + 0.752·113-s − 0.545·121-s + 1.08·123-s + 0.0887·127-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1769472 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1769472 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.60549684726132289974795529255, −7.20437267937941753564790337253, −6.76788469853695283773722321208, −6.37834427559823210863863483134, −6.00750584155276541902078555310, −5.53655211171527223145402050161, −4.67705120596326002280604459280, −4.38057509860893759445611584853, −4.23673666115774008063653795967, −3.47465177703265710800817322291, −2.96296830478488251517687278855, −2.40485389266313143507580177090, −1.81778011840556996777631218205, −1.21596478224321659078650931970, 0,
1.21596478224321659078650931970, 1.81778011840556996777631218205, 2.40485389266313143507580177090, 2.96296830478488251517687278855, 3.47465177703265710800817322291, 4.23673666115774008063653795967, 4.38057509860893759445611584853, 4.67705120596326002280604459280, 5.53655211171527223145402050161, 6.00750584155276541902078555310, 6.37834427559823210863863483134, 6.76788469853695283773722321208, 7.20437267937941753564790337253, 7.60549684726132289974795529255