L(s) = 1 | − 3·11-s + 3·17-s + 2·19-s − 25-s + 9·41-s − 7·43-s − 10·49-s − 15·59-s − 10·67-s − 14·73-s + 21·83-s + 3·89-s − 8·97-s − 33·107-s + 12·113-s − 13·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + ⋯ |
L(s) = 1 | − 0.904·11-s + 0.727·17-s + 0.458·19-s − 1/5·25-s + 1.40·41-s − 1.06·43-s − 1.42·49-s − 1.95·59-s − 1.22·67-s − 1.63·73-s + 2.30·83-s + 0.317·89-s − 0.812·97-s − 3.19·107-s + 1.12·113-s − 1.18·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.307·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.045341867674414842050062095173, −7.66180435710951130569001736977, −7.29421034537608693324627633554, −6.76000922076055942065765408833, −6.09746805300394433377005791914, −5.91390690868343933022328821893, −5.25767895579495833664005029602, −4.87948214229771902976184113537, −4.40081430962366242507071821991, −3.71641967585737752464275477547, −3.10131259833778906742446300429, −2.78538657920062050817305967176, −1.91508024921452348895485944175, −1.21145250786458108063321446106, 0,
1.21145250786458108063321446106, 1.91508024921452348895485944175, 2.78538657920062050817305967176, 3.10131259833778906742446300429, 3.71641967585737752464275477547, 4.40081430962366242507071821991, 4.87948214229771902976184113537, 5.25767895579495833664005029602, 5.91390690868343933022328821893, 6.09746805300394433377005791914, 6.76000922076055942065765408833, 7.29421034537608693324627633554, 7.66180435710951130569001736977, 8.045341867674414842050062095173