Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 110 x^{2} + 6241 x^{4}$ |
Frobenius angles: | $\pm0.127435774828$, $\pm0.872564225172$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{67})\) |
Galois group: | $C_2^2$ |
Jacobians: | $150$ |
Isomorphism classes: | 240 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6132$ | $37601424$ | $243088184052$ | $1517138645815296$ | $9468276086633057652$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $6022$ | $493040$ | $38950846$ | $3077056400$ | $243088912582$ | $19203908986160$ | $1517108965415038$ | $119851595982618320$ | $9468276090639268102$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 150 curves (of which all are hyperelliptic):
- $y^2=2 x^6+75 x^5+10 x^4+48 x^3+x^2+23 x+5$
- $y^2=6 x^6+67 x^5+30 x^4+65 x^3+3 x^2+69 x+15$
- $y^2=20 x^6+62 x^5+67 x^4+17 x^3+7 x^2+76 x+46$
- $y^2=76 x^6+29 x^5+21 x^4+68 x^3+69 x^2+39 x+35$
- $y^2=33 x^6+58 x^5+46 x^4+38 x^3+74 x^2+3 x+67$
- $y^2=25 x^6+34 x^5+21 x^4+31 x^3+35 x^2+33 x+66$
- $y^2=46 x^6+70 x^5+26 x^4+40 x^3+68 x^2+73 x+13$
- $y^2=x^6+x^3+71$
- $y^2=39 x^6+18 x^5+78 x^4+78 x^3+10 x+63$
- $y^2=38 x^6+54 x^5+76 x^4+76 x^3+30 x+31$
- $y^2=6 x^6+73 x^5+26 x^4+57 x^3+35 x^2+52 x+9$
- $y^2=34 x^6+35 x^5+35 x^4+68 x^3+13 x^2+59 x+16$
- $y^2=36 x^6+16 x^5+6 x^4+52 x^3+51 x^2+25 x+66$
- $y^2=25 x^6+68 x^5+29 x^4+52 x^3+46 x^2+30 x+34$
- $y^2=46 x^6+27 x^5+40 x^4+30 x^3+58 x^2+70 x+12$
- $y^2=21 x^6+32 x^5+x^4+48 x^3+58 x^2+50 x+17$
- $y^2=66 x^6+74 x^5+29 x^4+x^3+11 x^2+47 x+36$
- $y^2=14 x^6+47 x^5+64 x^4+27 x^3+50 x^2+18 x+30$
- $y^2=42 x^6+62 x^5+34 x^4+2 x^3+71 x^2+54 x+11$
- $y^2=30 x^6+77 x^5+19 x^4+17 x^3+56 x^2+59 x+36$
- and 130 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{67})\). |
The base change of $A$ to $\F_{79^{2}}$ is 1.6241.aeg 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-201}) \)$)$ |
Base change
This is a primitive isogeny class.