Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 7 x + 19 x^{2} )( 1 + 5 x + 19 x^{2} )$ |
$1 - 2 x + 3 x^{2} - 38 x^{3} + 361 x^{4}$ | |
Frobenius angles: | $\pm0.203259864187$, $\pm0.694430027533$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $46$ |
Isomorphism classes: | 200 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $325$ | $131625$ | $46337200$ | $17134547625$ | $6139535384125$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $18$ | $364$ | $6756$ | $131476$ | $2479518$ | $47044582$ | $893940282$ | $16983417316$ | $322685917404$ | $6131066208124$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 46 curves (of which all are hyperelliptic):
- $y^2=8 x^6+9 x^5+18 x^4+18 x^3+3 x^2+11 x+5$
- $y^2=18 x^6+18 x^5+8 x^4+2 x^3+6 x^2+15 x+17$
- $y^2=4 x^6+15 x^5+11 x^4+17 x^3+12 x+8$
- $y^2=5 x^6+5 x^4+8 x^3+7 x^2+9 x+10$
- $y^2=14 x^6+9 x^5+2 x^3+3 x^2+8 x+18$
- $y^2=15 x^6+16 x^5+2 x^3+16 x^2+13 x+3$
- $y^2=13 x^6+16 x^5+13 x^4+18 x^3+3 x^2+4 x+7$
- $y^2=3 x^6+10 x^5+9 x^4+10 x^2+3 x+5$
- $y^2=18 x^6+11 x^5+9 x^4+3 x^3+x^2+x+3$
- $y^2=14 x^6+5 x^5+18 x^4+7 x^3+16 x+5$
- $y^2=6 x^6+13 x^5+x^4+18 x^3+x^2+13 x+6$
- $y^2=14 x^6+2 x^5+5 x^4+9 x^3+7 x^2+12 x+17$
- $y^2=9 x^6+4 x^5+16 x^4+5 x^3+14 x^2+10 x+1$
- $y^2=14 x^6+14 x^5+4 x^4+15 x^3+11 x^2+4 x+6$
- $y^2=17 x^6+15 x^5+8 x^4+3 x^3+12 x^2+4 x+11$
- $y^2=11 x^6+2 x^5+2 x^4+18 x^3+13 x^2+9 x+5$
- $y^2=2 x^6+13 x^5+16 x^4+x^3+17 x^2+3$
- $y^2=9 x^6+14 x^5+11 x^4+3 x^3+6 x^2+9 x+12$
- $y^2=11 x^6+18 x^5+16 x^4+16 x^3+10 x^2+6 x+11$
- $y^2=15 x^6+13 x^5+18 x^4+15 x^3+18 x^2+13 x+15$
- and 26 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$The isogeny class factors as 1.19.ah $\times$ 1.19.f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.