Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 29 x^{2} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.205895273554$, $\pm0.794104726446$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{15}, \sqrt{-77})\) |
Galois group: | $C_2^2$ |
Jacobians: | $112$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2781$ | $7733961$ | $22164581124$ | $62335114677081$ | $174887469543425661$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $2752$ | $148878$ | $7900036$ | $418195494$ | $22164801118$ | $1174711139838$ | $62259676333828$ | $3299763591802134$ | $174887468721338272$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=49 x^6+22 x^5+28 x^4+23 x^3+50 x^2+35 x+32$
- $y^2=50 x^6+50 x^5+8 x^4+4 x^3+39 x^2+1$
- $y^2=47 x^6+47 x^5+16 x^4+8 x^3+25 x^2+2$
- $y^2=49 x^6+14 x^5+36 x^4+47 x^3+25 x^2+17 x+19$
- $y^2=45 x^6+28 x^5+19 x^4+41 x^3+50 x^2+34 x+38$
- $y^2=34 x^6+28 x^5+2 x^4+46 x^3+28 x^2+36 x+19$
- $y^2=15 x^6+3 x^5+4 x^4+39 x^3+3 x^2+19 x+38$
- $y^2=19 x^6+3 x^5+9 x^4+2 x^3+14 x^2+45 x+40$
- $y^2=38 x^6+6 x^5+18 x^4+4 x^3+28 x^2+37 x+27$
- $y^2=27 x^6+52 x^5+16 x^4+37 x^3+2 x^2+28 x+40$
- $y^2=x^6+51 x^5+32 x^4+21 x^3+4 x^2+3 x+27$
- $y^2=49 x^6+12 x^5+48 x^4+30 x^3+24 x^2+3 x+26$
- $y^2=35 x^6+6 x^5+44 x^4+43 x^3+32 x^2+17 x+46$
- $y^2=17 x^6+12 x^5+35 x^4+33 x^3+11 x^2+34 x+39$
- $y^2=20 x^6+28 x^5+20 x^4+47 x^3+3 x^2+11 x+32$
- $y^2=40 x^6+3 x^5+40 x^4+41 x^3+6 x^2+22 x+11$
- $y^2=47 x^6+25 x^5+5 x^4+20 x^3+51 x^2+31 x+36$
- $y^2=41 x^6+50 x^5+10 x^4+40 x^3+49 x^2+9 x+19$
- $y^2=46 x^6+48 x^5+42 x^4+7 x^3+26 x^2+20 x+45$
- $y^2=39 x^6+43 x^5+31 x^4+14 x^3+52 x^2+40 x+37$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{15}, \sqrt{-77})\). |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.abd 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1155}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.a_bd | $4$ | (not in LMFDB) |