| L(s) = 1 | − 4·5-s − 9-s + 6·17-s + 3·25-s − 8·29-s − 12·37-s − 8·41-s + 4·45-s + 5·49-s − 4·53-s − 16·61-s − 16·73-s − 8·81-s − 24·85-s − 8·89-s + 4·97-s + 8·101-s + 4·109-s + 20·113-s + 10·121-s + 20·125-s + 127-s + 131-s + 137-s + 139-s + 32·145-s + 149-s + ⋯ |
| L(s) = 1 | − 1.78·5-s − 1/3·9-s + 1.45·17-s + 3/5·25-s − 1.48·29-s − 1.97·37-s − 1.24·41-s + 0.596·45-s + 5/7·49-s − 0.549·53-s − 2.04·61-s − 1.87·73-s − 8/9·81-s − 2.60·85-s − 0.847·89-s + 0.406·97-s + 0.796·101-s + 0.383·109-s + 1.88·113-s + 0.909·121-s + 1.78·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2.65·145-s + 0.0819·149-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 43264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05388583804179182454648122016, −9.418255782270657682104939128553, −8.735572786889196785225324425288, −8.388820351083467531115469238700, −7.80490515923189006865582892845, −7.32779465242594216094746402162, −7.14065374730245462049984933610, −6.04618129714894847182353682080, −5.60958235390271557851881078821, −4.86071352318496454453301688251, −4.16931961393237786703767039878, −3.45548671744298782195200490697, −3.21426389289253930949098701996, −1.71639683162303224663633428360, 0,
1.71639683162303224663633428360, 3.21426389289253930949098701996, 3.45548671744298782195200490697, 4.16931961393237786703767039878, 4.86071352318496454453301688251, 5.60958235390271557851881078821, 6.04618129714894847182353682080, 7.14065374730245462049984933610, 7.32779465242594216094746402162, 7.80490515923189006865582892845, 8.388820351083467531115469238700, 8.735572786889196785225324425288, 9.418255782270657682104939128553, 10.05388583804179182454648122016