Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 4 x + 41 x^{2} )( 1 + 12 x + 41 x^{2} )$ |
| $1 + 8 x + 34 x^{2} + 328 x^{3} + 1681 x^{4}$ | |
| Frobenius angles: | $\pm0.398884665197$, $\pm0.886448235704$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $64$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2052$ | $2831760$ | $4797216900$ | $7980760535040$ | $13419639036857412$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $50$ | $1686$ | $69602$ | $2824286$ | $115830130$ | $4750133238$ | $194754269410$ | $7984935311806$ | $327381888200882$ | $13422659289610326$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=15 x^6+21 x^5+6 x^4+38 x^3+10 x^2+34 x+4$
- $y^2=19 x^6+18 x^5+5 x^4+4 x^3+26 x^2+22 x+39$
- $y^2=31 x^6+26 x^5+8 x^4+36 x^3+14 x^2+23 x$
- $y^2=13 x^6+39 x^5+20 x^4+33 x^3+27 x^2+40 x+5$
- $y^2=38 x^6+10 x^5+3 x^4+23 x^3+4 x^2+5 x+39$
- $y^2=10 x^6+36 x^5+17 x^4+25 x^3+20 x^2+5 x+35$
- $y^2=39 x^6+33 x^5+2 x^4+15 x^3+2 x^2+33 x+39$
- $y^2=2 x^6+12 x^4+24 x^3+39 x^2+14 x+19$
- $y^2=40 x^6+7 x^5+25 x^4+17 x^3+25 x^2+7 x+40$
- $y^2=13 x^6+40 x^5+24 x^4+32 x^3+38 x^2+27 x+22$
- $y^2=14 x^6+37 x^5+39 x^4+36 x^3+19 x^2+22 x+39$
- $y^2=9 x^6+16 x^5+33 x^4+40 x^3+28 x^2+12 x+8$
- $y^2=24 x^6+14 x^5+3 x^4+33 x^3+36 x^2+32 x+15$
- $y^2=31 x^6+27 x^5+37 x^4+9 x^3+3 x^2+34 x+4$
- $y^2=34 x^6+11 x^5+13 x^4+6 x^3+38 x^2+23 x+1$
- $y^2=8 x^6+19 x^5+10 x^4+28 x^3+39 x^2+10 x+9$
- $y^2=30 x^6+15 x^5+14 x^4+11 x^3+25 x^2+38 x+13$
- $y^2=6 x^6+2 x^5+10 x^4+17 x^3+36 x^2+35 x+17$
- $y^2=40 x^6+5 x^5+x^4+25 x^3+10 x^2+33 x+18$
- $y^2=20 x^6+13 x^5+22 x^4+33 x^3+6 x^2+16 x+22$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$| The isogeny class factors as 1.41.ae $\times$ 1.41.m and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.41.aq_fa | $2$ | (not in LMFDB) |
| 2.41.ai_bi | $2$ | (not in LMFDB) |
| 2.41.q_fa | $2$ | (not in LMFDB) |