Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 67 x^{2} + 2209 x^{4}$ |
| Frobenius angles: | $\pm0.376278914375$, $\pm0.623721085625$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{3}, \sqrt{-161})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $120$ |
| Isomorphism classes: | 192 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2277$ | $5184729$ | $10779072084$ | $23810603511321$ | $52599131898720957$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $48$ | $2344$ | $103824$ | $4879540$ | $229345008$ | $10778928838$ | $506623120464$ | $23811306170404$ | $1119130473102768$ | $52599131561611864$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=43 x^6+11 x^5+45 x^4+37 x^3+31 x^2+6 x+14$
- $y^2=27 x^6+8 x^5+37 x^4+44 x^3+14 x^2+30 x+23$
- $y^2=5 x^6+17 x^5+13 x^4+46 x^3+11 x^2+46 x+16$
- $y^2=25 x^6+38 x^5+18 x^4+42 x^3+8 x^2+42 x+33$
- $y^2=10 x^6+46 x^5+20 x^4+44 x^3+18 x^2+35 x+31$
- $y^2=3 x^6+42 x^5+6 x^4+32 x^3+43 x^2+34 x+14$
- $y^2=3 x^6+24 x^5+28 x^4+40 x^3+11 x^2+42 x+39$
- $y^2=15 x^6+26 x^5+46 x^4+12 x^3+8 x^2+22 x+7$
- $y^2=16 x^6+26 x^5+17 x^4+31 x^3+x^2+42 x+23$
- $y^2=33 x^6+36 x^5+38 x^4+14 x^3+5 x^2+22 x+21$
- $y^2=29 x^6+27 x^5+33 x^4+16 x^3+20 x^2+20 x+1$
- $y^2=4 x^6+41 x^5+24 x^4+33 x^3+6 x^2+6 x+5$
- $y^2=39 x^6+42 x^5+30 x^4+19 x^3+15 x^2+7 x+3$
- $y^2=7 x^6+22 x^5+9 x^4+x^3+28 x^2+35 x+15$
- $y^2=16 x^6+23 x^5+44 x^4+36 x^3+22 x^2+37 x+29$
- $y^2=33 x^6+21 x^5+32 x^4+39 x^3+16 x^2+44 x+4$
- $y^2=19 x^6+21 x^5+21 x^4+40 x^3+35 x^2+41 x+37$
- $y^2=x^6+11 x^5+11 x^4+12 x^3+34 x^2+17 x+44$
- $y^2=42 x^6+12 x^5+25 x^4+41 x^3+26 x^2+21 x+33$
- $y^2=43 x^6+37 x^4+38 x^3+20 x+1$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{2}}$.
Endomorphism algebra over $\F_{47}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{3}, \sqrt{-161})\). |
| The base change of $A$ to $\F_{47^{2}}$ is 1.2209.cp 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-483}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.47.a_acp | $4$ | (not in LMFDB) |
| 2.47.aj_cw | $12$ | (not in LMFDB) |
| 2.47.j_cw | $12$ | (not in LMFDB) |