L(s) = 1 | + 2-s + 4-s − 5-s + 8-s − 9-s − 10-s + 8·13-s + 16-s + 3·17-s − 18-s − 20-s + 25-s + 8·26-s − 12·29-s + 32-s + 3·34-s − 36-s + 15·37-s − 40-s + 8·41-s + 45-s + 5·49-s + 50-s + 8·52-s − 7·53-s − 12·58-s − 6·61-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.353·8-s − 1/3·9-s − 0.316·10-s + 2.21·13-s + 1/4·16-s + 0.727·17-s − 0.235·18-s − 0.223·20-s + 1/5·25-s + 1.56·26-s − 2.22·29-s + 0.176·32-s + 0.514·34-s − 1/6·36-s + 2.46·37-s − 0.158·40-s + 1.24·41-s + 0.149·45-s + 5/7·49-s + 0.141·50-s + 1.10·52-s − 0.961·53-s − 1.57·58-s − 0.768·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 244000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.809243548\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.809243548\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.994497812985441097333186800527, −8.410993189842138354379493724423, −7.920107335637643954652603019738, −7.56722821389737554323162603261, −7.14491421732180858204746519104, −6.25664325389821886307296895811, −5.98273371528139647887072331570, −5.77905580425571720051962727268, −5.03296346782038614857880832288, −4.17424845101585418813451282030, −4.03942128801727988319817639778, −3.32830085304161878826311635965, −2.86729956486879638370060810552, −1.84842562542878735930328727715, −0.989768776983117757485266874984,
0.989768776983117757485266874984, 1.84842562542878735930328727715, 2.86729956486879638370060810552, 3.32830085304161878826311635965, 4.03942128801727988319817639778, 4.17424845101585418813451282030, 5.03296346782038614857880832288, 5.77905580425571720051962727268, 5.98273371528139647887072331570, 6.25664325389821886307296895811, 7.14491421732180858204746519104, 7.56722821389737554323162603261, 7.920107335637643954652603019738, 8.410993189842138354379493724423, 8.994497812985441097333186800527