Invariants
This isogeny class is not simple,
primitive,
not ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$7470$ |
$65213100$ |
$498058485120$ |
$3935544850195200$ |
$31180930316039656350$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$83$ |
$8229$ |
$706496$ |
$62725601$ |
$5583918043$ |
$496981782162$ |
$44231341049587$ |
$3936588805063681$ |
$350356404033696704$ |
$31181719932306481749$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 108 curves (of which all are hyperelliptic):
- $y^2=8 x^6+9 x^5+45 x^4+86 x^3+31 x^2+33 x+11$
- $y^2=76 x^6+11 x^5+32 x^4+42 x^3+24 x^2+70 x+49$
- $y^2=58 x^6+47 x^5+21 x^4+45 x^3+9 x^2+57 x+56$
- $y^2=66 x^6+13 x^5+27 x^4+49 x^3+31 x^2+58 x+23$
- $y^2=83 x^6+24 x^5+81 x^4+42 x^3+81 x^2+27 x+72$
- $y^2=x^6+85 x^5+48 x^4+88 x^3+75 x^2+69 x+35$
- $y^2=78 x^6+30 x^5+54 x^4+6 x^3+2 x^2+47 x+41$
- $y^2=25 x^6+67 x^5+35 x^4+29 x^3+7 x^2+33 x+69$
- $y^2=26 x^6+55 x^5+78 x^4+40 x^3+43 x^2+31 x+80$
- $y^2=21 x^6+6 x^5+60 x^4+39 x^3+40 x^2+27 x+64$
- $y^2=2 x^6+52 x^5+67 x^4+8 x^3+43 x^2+88 x+41$
- $y^2=50 x^6+87 x^5+53 x^4+84 x^3+7 x^2+85 x+57$
- $y^2=5 x^6+58 x^5+35 x^4+49 x^3+72 x^2+56 x+33$
- $y^2=85 x^6+61 x^5+50 x^4+10 x^3+55 x^2+55 x+55$
- $y^2=73 x^6+79 x^5+88 x^4+49 x^3+13 x^2+86 x+81$
- $y^2=83 x^6+4 x^5+26 x^4+9 x^3+84 x^2+84 x+49$
- $y^2=87 x^6+3 x^5+37 x^4+10 x^3+30 x^2+48 x+68$
- $y^2=4 x^6+49 x^5+29 x^4+76 x^3+36 x^2+9 x+88$
- $y^2=47 x^6+14 x^5+31 x^4+4 x^3+18 x^2+19 x+38$
- $y^2=34 x^6+11 x^5+19 x^4+2 x^3+40 x^2+23 x+74$
- and 88 more
- $y^2=20 x^6+57 x^5+65 x^4+36 x^3+6 x^2+26 x+88$
- $y^2=37 x^6+80 x^5+27 x^4+46 x^3+26 x^2+7$
- $y^2=62 x^6+40 x^5+43 x^4+33 x^3+40 x^2+16 x+72$
- $y^2=47 x^6+52 x^5+73 x^4+54 x^3+43 x^2+25 x+60$
- $y^2=15 x^6+46 x^5+9 x^4+31 x^3+4 x^2+57 x+57$
- $y^2=63 x^6+17 x^5+56 x^4+48 x^3+18 x^2+5 x+65$
- $y^2=37 x^6+34 x^5+86 x^4+81 x^3+16 x^2+13 x+61$
- $y^2=12 x^6+82 x^5+37 x^4+50 x^3+53 x^2+68 x+87$
- $y^2=15 x^6+38 x^5+49 x^4+64 x^3+54 x^2+48 x+66$
- $y^2=62 x^6+26 x^5+49 x^4+64 x^3+81 x^2+28 x+31$
- $y^2=63 x^6+10 x^5+23 x^4+10 x^3+61 x^2+78 x+21$
- $y^2=38 x^6+22 x^5+31 x^4+72 x^3+4 x^2+30 x+71$
- $y^2=42 x^6+19 x^5+56 x^4+82 x^3+21 x^2+43 x+3$
- $y^2=36 x^6+11 x^5+31 x^4+71 x^3+88 x^2+18 x+31$
- $y^2=48 x^6+25 x^5+31 x^4+28 x^3+52 x^2+31 x+30$
- $y^2=33 x^6+18 x^5+15 x^4+63 x^3+15 x^2+42 x+18$
- $y^2=55 x^6+16 x^5+61 x^4+16 x^3+47 x^2+14 x+66$
- $y^2=44 x^6+17 x^5+27 x^4+59 x^3+81 x^2+2 x+46$
- $y^2=38 x^6+58 x^5+27 x^4+64 x^3+28 x^2+48 x+71$
- $y^2=22 x^6+41 x^5+24 x^4+78 x^3+60 x^2+4 x+60$
- $y^2=60 x^6+8 x^5+56 x^4+12 x^3+5 x^2+37 x+23$
- $y^2=19 x^6+81 x^5+54 x^4+69 x^3+72 x^2+81 x+79$
- $y^2=85 x^6+66 x^5+85 x^4+85 x^3+47 x^2+60 x+56$
- $y^2=87 x^6+29 x^5+50 x^4+17 x^3+7 x^2+25 x+57$
- $y^2=83 x^6+32 x^5+77 x^4+15 x^3+60 x^2+8 x+29$
- $y^2=77 x^6+41 x^5+46 x^4+3 x^3+41 x^2+62 x+60$
- $y^2=11 x^6+69 x^5+14 x^4+82 x^3+59 x^2+85 x+85$
- $y^2=26 x^6+81 x^5+80 x^4+62 x^3+80 x^2+8 x+5$
- $y^2=31 x^6+25 x^5+60 x^4+46 x^3+71 x^2+82 x+12$
- $y^2=30 x^6+12 x^5+18 x^4+37 x^3+60 x^2+46 x+58$
- $y^2=11 x^6+39 x^5+73 x^4+43 x^2+11 x+27$
- $y^2=2 x^6+8 x^5+30 x^4+85 x^3+29 x^2+65 x+81$
- $y^2=72 x^6+12 x^5+69 x^4+19 x^3+48 x^2+83 x+62$
- $y^2=83 x^6+34 x^5+72 x^4+5 x^3+64 x^2+54 x+82$
- $y^2=29 x^6+19 x^5+73 x^4+32 x^3+40 x^2+82 x+46$
- $y^2=74 x^6+82 x^5+85 x^4+2 x^3+29 x^2+11 x+37$
- $y^2=50 x^6+5 x^5+20 x^4+78 x^3+30 x^2+13 x+68$
- $y^2=11 x^6+79 x^5+81 x^4+22 x^3+36 x^2+81 x+15$
- $y^2=64 x^6+50 x^5+56 x^4+58 x^3+50 x^2+21 x+49$
- $y^2=2 x^6+64 x^5+60 x^4+82 x^3+21 x^2+68 x+73$
- $y^2=49 x^6+56 x^5+12 x^4+62 x^3+18 x^2+30 x+50$
- $y^2=62 x^6+82 x^5+31 x^4+2 x^3+80 x^2+24 x+1$
- $y^2=45 x^6+39 x^5+68 x^4+84 x^3+64 x^2+69 x+15$
- $y^2=87 x^6+60 x^5+48 x^4+78 x^3+49 x^2+63 x+48$
- $y^2=81 x^6+46 x^5+76 x^4+46 x^3+9 x^2+73 x+22$
- $y^2=78 x^6+69 x^5+83 x^4+22 x^3+30 x^2+8 x+72$
- $y^2=34 x^6+44 x^5+6 x^4+81 x^3+88 x^2+75 x+57$
- $y^2=69 x^6+24 x^5+24 x^4+20 x^3+8 x^2+44 x+76$
- $y^2=53 x^6+57 x^5+69 x^4+46 x^3+63 x^2+74 x+61$
- $y^2=32 x^6+14 x^5+84 x^4+39 x^3+45 x^2+49 x+41$
- $y^2=42 x^6+53 x^5+14 x^4+86 x^3+83 x^2+34 x+14$
- $y^2=14 x^6+6 x^5+81 x^4+23 x^3+49 x^2+28 x+6$
- $y^2=30 x^6+60 x^5+7 x^4+52 x^3+28 x^2+86 x+35$
- $y^2=30 x^6+55 x^5+35 x^4+8 x^3+32 x^2+47 x+28$
- $y^2=27 x^6+8 x^5+44 x^4+28 x^3+12 x^2+x+65$
- $y^2=73 x^6+16 x^5+10 x^4+15 x^3+29 x^2+16 x+57$
- $y^2=86 x^6+86 x^5+60 x^4+77 x^3+24 x^2+51 x+73$
- $y^2=33 x^6+30 x^5+59 x^4+53 x^3+43 x^2+40 x+3$
- $y^2=11 x^6+24 x^5+63 x^4+25 x^3+56 x^2+39 x+71$
- $y^2=52 x^6+59 x^5+2 x^4+27 x^3+30 x^2+82 x+70$
- $y^2=24 x^6+47 x^5+16 x^4+42 x^3+42 x^2+87 x+29$
- $y^2=87 x^6+7 x^5+74 x^4+73 x^3+15 x^2+45 x+81$
- $y^2=62 x^6+28 x^5+13 x^4+40 x^3+44 x^2+82 x+76$
- $y^2=58 x^6+71 x^5+55 x^4+32 x^3+46 x^2+51 x+16$
- $y^2=70 x^6+71 x^5+59 x^4+86 x^3+44 x^2+27 x+5$
- $y^2=38 x^6+24 x^5+34 x^4+19 x^3+64 x^2+7 x+11$
- $y^2=5 x^6+47 x^5+31 x^4+64 x^3+35 x^2+83 x+28$
- $y^2=50 x^6+2 x^5+47 x^4+75 x^3+75 x^2+46 x+65$
- $y^2=40 x^6+7 x^5+82 x^4+33 x^3+37 x^2+52 x+82$
- $y^2=26 x^6+26 x^5+33 x^4+84 x^3+73 x^2+55 x+86$
- $y^2=60 x^6+78 x^5+80 x^4+18 x^3+64 x^2+29 x+80$
- $y^2=5 x^6+14 x^5+4 x^4+11 x^3+33 x^2+56 x+56$
- $y^2=73 x^6+77 x^5+44 x^4+4 x^3+63 x^2+38 x+8$
- $y^2=44 x^6+71 x^5+81 x^4+56 x^3+74 x^2+60 x+77$
- $y^2=13 x^6+13 x^5+5 x^4+48 x^3+76 x^2+60 x+9$
- $y^2=84 x^6+62 x^5+54 x^4+74 x^3+80 x^2+10 x+66$
- $y^2=30 x^6+51 x^5+46 x^4+82 x^3+51 x^2+33 x+20$
- $y^2=28 x^6+19 x^5+50 x^4+16 x^3+59 x^2+57 x+30$
- $y^2=31 x^6+27 x^5+73 x^4+x^3+49 x^2+8 x+1$
- $y^2=23 x^6+82 x^5+44 x^4+19 x^3+87 x^2+84 x+15$
- $y^2=58 x^6+34 x^5+69 x^4+18 x^3+58 x^2+30 x+61$
- $y^2=60 x^6+84 x^5+9 x^4+38 x^3+68 x^2+10 x+53$
- $y^2=63 x^6+30 x^5+22 x^4+21 x^3+31 x^2+70 x+5$
- $y^2=60 x^6+17 x^5+20 x^4+50 x^3+72 x^2+11 x+61$
- $y^2=74 x^6+42 x^5+45 x^4+44 x^3+30 x^2+66 x+24$
- $y^2=54 x^6+85 x^5+71 x^4+27 x^3+11 x^2+42 x+37$
- $y^2=45 x^6+25 x^5+74 x^4+22 x^3+61 x^2+10 x+83$
- $y^2=50 x^6+88 x^5+11 x^4+33 x^3+34 x^2+45 x+13$
All geometric endomorphisms are defined over $\F_{89^{2}}$.
Endomorphism algebra over $\F_{89}$
The isogeny class factors as 1.89.ah $\times$ 1.89.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
|
Endomorphism algebra over $\overline{\F}_{89}$
The base change of $A$ to $\F_{89^{2}}$ is 1.7921.ez $\times$ 1.7921.gw. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
2.89.h_gw | $2$ | (not in LMFDB) |