Properties

Label 2.89.ah_gw
Base field $\F_{89}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $2$
L-polynomial:  $( 1 - 7 x + 89 x^{2} )( 1 + 89 x^{2} )$
  $1 - 7 x + 178 x^{2} - 623 x^{3} + 7921 x^{4}$
Frobenius angles:  $\pm0.379015237148$, $\pm0.5$
Angle rank:  $1$ (numerical)
Jacobians:  $108$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7470$ $65213100$ $498058485120$ $3935544850195200$ $31180930316039656350$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $83$ $8229$ $706496$ $62725601$ $5583918043$ $496981782162$ $44231341049587$ $3936588805063681$ $350356404033696704$ $31181719932306481749$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 108 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89^{2}}$.

Endomorphism algebra over $\F_{89}$
The isogeny class factors as 1.89.ah $\times$ 1.89.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{89}$
The base change of $A$ to $\F_{89^{2}}$ is 1.7921.ez $\times$ 1.7921.gw. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.h_gw$2$(not in LMFDB)