Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 77 x^{2} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.363148781353$, $\pm0.636851218647$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{41}, \sqrt{-195})\) |
Galois group: | $C_2^2$ |
Jacobians: | $120$ |
Isomorphism classes: | 128 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3559$ | $12666481$ | $42180186064$ | $146855497376025$ | $511116752726652679$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $3636$ | $205380$ | $12119428$ | $714924300$ | $42179838486$ | $2488651484820$ | $146830483939588$ | $8662995818654940$ | $511116752152663956$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=42 x^6+11 x^5+32 x^4+36 x^2+55 x+54$
- $y^2=25 x^6+22 x^5+5 x^4+13 x^2+51 x+49$
- $y^2=9 x^6+14 x^5+29 x^4+34 x^3+53 x^2+35 x+19$
- $y^2=18 x^6+28 x^5+58 x^4+9 x^3+47 x^2+11 x+38$
- $y^2=x^6+6 x^5+51 x^4+x^3+45 x^2+17 x+38$
- $y^2=2 x^6+12 x^5+43 x^4+2 x^3+31 x^2+34 x+17$
- $y^2=6 x^6+13 x^5+9 x^4+51 x^3+37 x^2+50 x+51$
- $y^2=2 x^6+4 x^5+11 x^4+10 x^3+10 x^2+32 x+40$
- $y^2=4 x^6+8 x^5+22 x^4+20 x^3+20 x^2+5 x+21$
- $y^2=37 x^6+33 x^5+4 x^4+30 x^3+23 x^2+18 x+49$
- $y^2=17 x^6+8 x^5+18 x^4+15 x^3+5 x^2+26 x+15$
- $y^2=34 x^6+16 x^5+36 x^4+30 x^3+10 x^2+52 x+30$
- $y^2=30 x^6+34 x^5+44 x^4+34 x^3+36 x^2+29 x+52$
- $y^2=x^6+9 x^5+29 x^4+9 x^3+13 x^2+58 x+45$
- $y^2=9 x^6+33 x^5+18 x^4+6 x^3+44 x^2+6 x+16$
- $y^2=18 x^6+7 x^5+36 x^4+12 x^3+29 x^2+12 x+32$
- $y^2=48 x^6+10 x^5+38 x^4+11 x^3+24 x^2+22 x+14$
- $y^2=37 x^6+20 x^5+17 x^4+22 x^3+48 x^2+44 x+28$
- $y^2=15 x^6+27 x^5+42 x^4+11 x^3+46 x^2+6 x+53$
- $y^2=30 x^6+54 x^5+25 x^4+22 x^3+33 x^2+12 x+47$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{41}, \sqrt{-195})\). |
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.cz 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7995}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.a_acz | $4$ | (not in LMFDB) |