Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 97 x^{2} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.150677248419$, $\pm0.849322751581$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-69}, \sqrt{263})\) |
Galois group: | $C_2^2$ |
Jacobians: | $140$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6793$ | $46144849$ | $326941465396$ | $2252707036961481$ | $15516041187038248993$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $6696$ | $571788$ | $47467060$ | $3939040644$ | $326942557422$ | $27136050989628$ | $2252292383796004$ | $186940255267540404$ | $15516041186870644536$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 140 curves (of which all are hyperelliptic):
- $y^2=79 x^6+2 x^5+60 x^4+18 x^3+16 x^2+48 x+66$
- $y^2=24 x^6+15 x^5+x^4+27 x^3+65 x^2+19 x+22$
- $y^2=48 x^6+30 x^5+2 x^4+54 x^3+47 x^2+38 x+44$
- $y^2=34 x^6+66 x^5+20 x^4+65 x^3+18 x^2+19 x+63$
- $y^2=68 x^6+49 x^5+40 x^4+47 x^3+36 x^2+38 x+43$
- $y^2=59 x^6+23 x^5+45 x^4+19 x^3+22 x^2+32 x+74$
- $y^2=35 x^6+46 x^5+7 x^4+38 x^3+44 x^2+64 x+65$
- $y^2=65 x^6+46 x^5+71 x^4+23 x^3+80 x^2+45 x+39$
- $y^2=47 x^6+9 x^5+59 x^4+46 x^3+77 x^2+7 x+78$
- $y^2=29 x^6+4 x^5+22 x^4+39 x^3+9 x^2+24 x+82$
- $y^2=58 x^6+8 x^5+44 x^4+78 x^3+18 x^2+48 x+81$
- $y^2=49 x^6+74 x^5+12 x^4+5 x^3+33 x^2+12 x+45$
- $y^2=15 x^6+65 x^5+24 x^4+10 x^3+66 x^2+24 x+7$
- $y^2=73 x^6+51 x^5+70 x^4+11 x^3+4 x^2+67 x+23$
- $y^2=63 x^6+19 x^5+57 x^4+22 x^3+8 x^2+51 x+46$
- $y^2=80 x^6+15 x^5+61 x^4+27 x^3+66 x^2+37 x+34$
- $y^2=3 x^6+82 x^5+50 x^4+64 x^3+82 x^2+21 x+42$
- $y^2=6 x^6+81 x^5+17 x^4+45 x^3+81 x^2+42 x+1$
- $y^2=54 x^6+55 x^5+21 x^4+52 x^3+45 x^2+68 x+44$
- $y^2=25 x^6+27 x^5+42 x^4+21 x^3+7 x^2+53 x+5$
- and 120 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-69}, \sqrt{263})\). |
The base change of $A$ to $\F_{83^{2}}$ is 1.6889.adt 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-18147}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.a_dt | $4$ | (not in LMFDB) |