Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 10 x + 37 x^{2} )( 1 - 5 x + 37 x^{2} )$ |
$1 - 15 x + 124 x^{2} - 555 x^{3} + 1369 x^{4}$ | |
Frobenius angles: | $\pm0.192861133077$, $\pm0.365180502153$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $20$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $924$ | $1907136$ | $2593228176$ | $3516980011776$ | $4808745500384364$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $23$ | $1393$ | $51194$ | $1876561$ | $69346283$ | $2565732022$ | $94932265199$ | $3512482585153$ | $129961738575218$ | $4808584173540553$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=15 x^6+32 x^5+29 x^4+23 x^3+26 x^2+14 x+17$
- $y^2=24 x^6+34 x^5+13 x^4+21 x^3+26 x^2+10 x+34$
- $y^2=20 x^6+28 x^5+6 x^4+35 x^3+10 x^2+3 x+11$
- $y^2=13 x^5+12 x^4+34 x^3+5 x^2+3 x+20$
- $y^2=11 x^6+19 x^5+9 x^4+25 x^3+x^2+13 x+21$
- $y^2=19 x^6+x^5+18 x^4+31 x^3+24 x^2+x+6$
- $y^2=23 x^6+28 x^5+11 x^4+34 x^3+6 x^2+13 x+35$
- $y^2=15 x^6+19 x^5+7 x^3+18 x^2+3 x+35$
- $y^2=24 x^6+19 x^5+3 x^4+21 x^3+2 x^2+7 x+35$
- $y^2=18 x^6+23 x^5+13 x^4+9 x^3+31 x^2+17 x$
- $y^2=20 x^6+21 x^5+4 x^4+29 x^3+x^2+9 x+28$
- $y^2=31 x^6+7 x^5+8 x^4+4 x^3+12 x^2+20 x+23$
- $y^2=18 x^6+3 x^5+29 x^4+35 x^3+34 x^2+11 x+32$
- $y^2=30 x^6+15 x^5+35 x^4+30 x^3+22 x^2+24 x+17$
- $y^2=24 x^6+13 x^5+20 x^4+27 x^3+26 x^2+10 x+26$
- $y^2=12 x^6+33 x^5+14 x^4+8 x^3+x^2+17 x+9$
- $y^2=35 x^6+13 x^5+14 x^4+12 x^3+33 x^2+10 x+29$
- $y^2=22 x^6+2 x^5+3 x^4+28 x^3+12 x^2+34 x+7$
- $y^2=19 x^6+6 x^5+8 x^4+25 x^3+19 x^2+27 x+19$
- $y^2=20 x^6+6 x^5+17 x^4+4 x^3+3 x^2+35 x+23$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$The isogeny class factors as 1.37.ak $\times$ 1.37.af and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.