L(s) = 1 | + 3-s − 6·7-s + 9-s − 4·13-s + 2·19-s − 6·21-s − 25-s + 27-s − 4·31-s + 16·37-s − 4·39-s + 26·43-s + 13·49-s + 2·57-s − 26·61-s − 6·63-s + 8·67-s − 6·73-s − 75-s − 8·79-s + 81-s + 24·91-s − 4·93-s + 4·97-s − 12·103-s + 32·109-s + 16·111-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 2.26·7-s + 1/3·9-s − 1.10·13-s + 0.458·19-s − 1.30·21-s − 1/5·25-s + 0.192·27-s − 0.718·31-s + 2.63·37-s − 0.640·39-s + 3.96·43-s + 13/7·49-s + 0.264·57-s − 3.32·61-s − 0.755·63-s + 0.977·67-s − 0.702·73-s − 0.115·75-s − 0.900·79-s + 1/9·81-s + 2.51·91-s − 0.414·93-s + 0.406·97-s − 1.18·103-s + 3.06·109-s + 1.51·111-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.924107656862495380801900682255, −7.74468446164444943887517800732, −7.21252020459675544867285019060, −7.00612622598426407511060309816, −6.16799098038826968846498615960, −6.02515524155855065259322751403, −5.66548080355213698116568009078, −4.59164546840578345262367580791, −4.44688717155938259742687854966, −3.65611432799862238242056225439, −3.25222241798197103354320694490, −2.53070795011250446615850135913, −2.49847213158180922818846804858, −1.07996559647171411835733236564, 0,
1.07996559647171411835733236564, 2.49847213158180922818846804858, 2.53070795011250446615850135913, 3.25222241798197103354320694490, 3.65611432799862238242056225439, 4.44688717155938259742687854966, 4.59164546840578345262367580791, 5.66548080355213698116568009078, 6.02515524155855065259322751403, 6.16799098038826968846498615960, 7.00612622598426407511060309816, 7.21252020459675544867285019060, 7.74468446164444943887517800732, 7.924107656862495380801900682255