L(s) = 1 | + 3-s + 9-s + 6·13-s + 2·19-s − 6·25-s + 27-s − 6·31-s − 2·37-s + 6·39-s + 22·43-s + 2·57-s + 12·61-s + 26·67-s + 22·73-s − 6·75-s − 6·79-s + 81-s − 6·93-s − 20·97-s − 22·103-s − 22·109-s − 2·111-s + 6·117-s − 18·121-s + 127-s + 22·129-s + 131-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/3·9-s + 1.66·13-s + 0.458·19-s − 6/5·25-s + 0.192·27-s − 1.07·31-s − 0.328·37-s + 0.960·39-s + 3.35·43-s + 0.264·57-s + 1.53·61-s + 3.17·67-s + 2.57·73-s − 0.692·75-s − 0.675·79-s + 1/9·81-s − 0.622·93-s − 2.03·97-s − 2.16·103-s − 2.10·109-s − 0.189·111-s + 0.554·117-s − 1.63·121-s + 0.0887·127-s + 1.93·129-s + 0.0873·131-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1037232 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1037232 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.955528550\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.955528550\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.213177915144848467457073975549, −7.86003472307450153648690839574, −7.14892757864943782004910226592, −6.92104634189874182322622514416, −6.35041177064936179659786450497, −5.84853197538479925165694215764, −5.44492897197805836950949219523, −5.10264611010005387817887955500, −3.98667962587873281431655095458, −3.97239648734814585129569787000, −3.65955604277278655695987739777, −2.72076192155102032854084811383, −2.31898745928895941643396981279, −1.52796226243779435664402358200, −0.814330480313867343133277258395,
0.814330480313867343133277258395, 1.52796226243779435664402358200, 2.31898745928895941643396981279, 2.72076192155102032854084811383, 3.65955604277278655695987739777, 3.97239648734814585129569787000, 3.98667962587873281431655095458, 5.10264611010005387817887955500, 5.44492897197805836950949219523, 5.84853197538479925165694215764, 6.35041177064936179659786450497, 6.92104634189874182322622514416, 7.14892757864943782004910226592, 7.86003472307450153648690839574, 8.213177915144848467457073975549