| L(s) = 1 | − 3-s − 5-s + 9-s − 6·11-s + 15-s − 4·23-s − 4·25-s − 27-s + 13·31-s + 6·33-s − 2·37-s − 45-s − 4·47-s − 6·49-s − 5·53-s + 6·55-s + 10·59-s − 23·67-s + 4·69-s − 17·71-s + 4·75-s + 81-s − 7·89-s − 13·93-s − 6·99-s − 103-s + 2·111-s + ⋯ |
| L(s) = 1 | − 0.577·3-s − 0.447·5-s + 1/3·9-s − 1.80·11-s + 0.258·15-s − 0.834·23-s − 4/5·25-s − 0.192·27-s + 2.33·31-s + 1.04·33-s − 0.328·37-s − 0.149·45-s − 0.583·47-s − 6/7·49-s − 0.686·53-s + 0.809·55-s + 1.30·59-s − 2.80·67-s + 0.481·69-s − 2.01·71-s + 0.461·75-s + 1/9·81-s − 0.741·89-s − 1.34·93-s − 0.603·99-s − 0.0985·103-s + 0.189·111-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5227200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5227200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.3439485797\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3439485797\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.32810792519462363579075763410, −6.97037650469573923996379116896, −6.34843206146956534720107199975, −6.08391177184320278685537348690, −5.68972314928779128367651658754, −5.30111686401588385575084776141, −4.68881636389280414427499859108, −4.54078731609562846440637049070, −4.11969489158323157066783943173, −3.30650229130426370682651886817, −3.05161483995839953138273129426, −2.47327378862423664395573636931, −1.91173304452267456152391344527, −1.19049732986691411995992225935, −0.22099173962176644626687841554,
0.22099173962176644626687841554, 1.19049732986691411995992225935, 1.91173304452267456152391344527, 2.47327378862423664395573636931, 3.05161483995839953138273129426, 3.30650229130426370682651886817, 4.11969489158323157066783943173, 4.54078731609562846440637049070, 4.68881636389280414427499859108, 5.30111686401588385575084776141, 5.68972314928779128367651658754, 6.08391177184320278685537348690, 6.34843206146956534720107199975, 6.97037650469573923996379116896, 7.32810792519462363579075763410