Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 10 x + 31 x^{2} )( 1 - 3 x + 31 x^{2} )$ |
| $1 - 13 x + 92 x^{2} - 403 x^{3} + 961 x^{4}$ | |
| Frobenius angles: | $\pm0.145000771013$, $\pm0.413172001920$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $12$ |
| Isomorphism classes: | 100 |
| Cyclic group of points: | yes |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $638$ | $937860$ | $892967768$ | $852514740000$ | $819527410949258$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $19$ | $977$ | $29974$ | $923113$ | $28625629$ | $887554442$ | $27513258379$ | $852893716273$ | $26439621554794$ | $819628243511177$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=24 x^6+x^5+22 x^4+9 x^3+4 x^2+27 x+14$
- $y^2=3 x^6+12 x^5+10 x^4+2 x^3+21 x^2+17$
- $y^2=12 x^6+21 x^5+19 x^4+19 x^3+7 x^2+23 x+22$
- $y^2=23 x^6+15 x^5+4 x^4+x^3+21 x^2+20 x+22$
- $y^2=21 x^6+6 x^5+13 x^4+5 x^3+7 x^2+30 x+12$
- $y^2=19 x^6+26 x^5+15 x^4+21 x^3+7 x^2+2 x+14$
- $y^2=26 x^6+23 x^5+4 x^4+27 x^3+11 x^2+12 x+24$
- $y^2=11 x^6+21 x^5+16 x^3+21 x^2+3 x+29$
- $y^2=22 x^6+29 x^5+16 x^4+13 x^3+14 x^2+2$
- $y^2=22 x^6+4 x^5+25 x^4+25 x^3+25 x^2+26 x+21$
- $y^2=27 x^6+3 x^5+21 x^4+28 x^3+x^2+22 x+25$
- $y^2=16 x^6+4 x^5+10 x^4+30 x^3+13 x+9$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$| The isogeny class factors as 1.31.ak $\times$ 1.31.ad and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.31.ah_bg | $2$ | (not in LMFDB) |
| 2.31.h_bg | $2$ | (not in LMFDB) |
| 2.31.n_do | $2$ | (not in LMFDB) |