Properties

Label 2.59.ak_fm
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $( 1 - 6 x + 59 x^{2} )( 1 - 4 x + 59 x^{2} )$
  $1 - 10 x + 142 x^{2} - 590 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.372279067924$, $\pm0.416152878126$
Angle rank:  $2$ (numerical)
Jacobians:  $56$
Isomorphism classes:  224
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3024$ $12773376$ $42487505424$ $146791636992000$ $511045086079244304$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $50$ $3666$ $206870$ $12114158$ $714824050$ $42180224706$ $2488655553910$ $146830474169758$ $8662995773196530$ $511116751129934706$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The isogeny class factors as 1.59.ag $\times$ 1.59.ae and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.ac_dq$2$(not in LMFDB)
2.59.c_dq$2$(not in LMFDB)
2.59.k_fm$2$(not in LMFDB)