Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 6 x + 59 x^{2} )( 1 - 4 x + 59 x^{2} )$ |
| $1 - 10 x + 142 x^{2} - 590 x^{3} + 3481 x^{4}$ | |
| Frobenius angles: | $\pm0.372279067924$, $\pm0.416152878126$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $56$ |
| Isomorphism classes: | 224 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3024$ | $12773376$ | $42487505424$ | $146791636992000$ | $511045086079244304$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $50$ | $3666$ | $206870$ | $12114158$ | $714824050$ | $42180224706$ | $2488655553910$ | $146830474169758$ | $8662995773196530$ | $511116751129934706$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=19 x^6+3 x^5+45 x^4+30 x^3+45 x^2+3 x+19$
- $y^2=23 x^6+14 x^5+9 x^4+41 x^3+9 x^2+14 x+23$
- $y^2=8 x^6+11 x^5+41 x^4+25 x^3+21 x^2+33 x+31$
- $y^2=16 x^6+53 x^5+14 x^4+14 x^3+14 x^2+53 x+16$
- $y^2=36 x^6+49 x^5+x^4+21 x^3+x^2+49 x+36$
- $y^2=33 x^6+26 x^5+40 x^4+37 x^3+18 x^2+15 x+8$
- $y^2=51 x^6+46 x^5+55 x^4+22 x^3+40 x^2+57 x+35$
- $y^2=20 x^6+12 x^5+57 x^4+22 x^3+4 x^2+48 x+17$
- $y^2=6 x^6+56 x^5+14 x^4+51 x^3+14 x^2+56 x+6$
- $y^2=48 x^6+8 x^5+8 x^4+21 x^3+8 x^2+8 x+48$
- $y^2=28 x^6+41 x^5+19 x^4+45 x^3+19 x^2+41 x+28$
- $y^2=5 x^6+31 x^5+54 x^4+53 x^3+54 x^2+31 x+5$
- $y^2=18 x^6+38 x^5+41 x^4+32 x^3+41 x^2+38 x+18$
- $y^2=46 x^6+51 x^5+52 x^4+38 x^3+52 x^2+51 x+46$
- $y^2=24 x^6+19 x^5+5 x^4+6 x^3+20 x^2+9 x+2$
- $y^2=53 x^6+49 x^5+19 x^4+41 x^3+19 x^2+49 x+53$
- $y^2=28 x^6+26 x^5+24 x^4+34 x^3+37 x^2+3 x+22$
- $y^2=14 x^6+56 x^5+13 x^4+48 x^3+13 x^2+56 x+14$
- $y^2=36 x^6+54 x^5+19 x^4+36 x^3+19 x^2+54 x+36$
- $y^2=58 x^6+22 x^5+54 x^4+37 x^3+54 x^2+22 x+58$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The isogeny class factors as 1.59.ag $\times$ 1.59.ae and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.ac_dq | $2$ | (not in LMFDB) |
| 2.59.c_dq | $2$ | (not in LMFDB) |
| 2.59.k_fm | $2$ | (not in LMFDB) |