Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 8 x + 89 x^{2} )( 1 + 15 x + 89 x^{2} )$ |
| $1 + 7 x + 58 x^{2} + 623 x^{3} + 7921 x^{4}$ | |
| Frobenius angles: | $\pm0.360625947619$, $\pm0.792528363707$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $240$ |
| Cyclic group of points: | yes |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $8610$ | $63283500$ | $497682417960$ | $3937622899392000$ | $31180211185432744050$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $97$ | $7989$ | $705964$ | $62758721$ | $5583789257$ | $496981076562$ | $44231333927633$ | $3936588862712641$ | $350356405638319276$ | $31181719915444994949$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 240 curves (of which all are hyperelliptic):
- $y^2=69 x^6+33 x^5+14 x^4+33 x^3+26 x^2+31 x+26$
- $y^2=15 x^6+27 x^5+6 x^4+74 x^3+81 x^2+70 x+25$
- $y^2=7 x^6+80 x^5+88 x^4+76 x^3+86 x^2+10 x+21$
- $y^2=36 x^6+68 x^5+18 x^4+16 x^3+32 x^2+71 x+33$
- $y^2=61 x^6+46 x^5+47 x^4+7 x^3+27 x^2+11 x+51$
- $y^2=17 x^6+19 x^5+11 x^4+46 x^3+2 x^2+32 x+60$
- $y^2=40 x^6+40 x^5+86 x^4+28 x^3+x^2+36 x+59$
- $y^2=75 x^6+43 x^5+12 x^4+29 x^3+40 x^2+67 x+37$
- $y^2=40 x^6+35 x^5+27 x^4+15 x^3+48 x^2+8 x+14$
- $y^2=19 x^6+11 x^5+72 x^4+22 x^3+15 x^2+60 x+9$
- $y^2=30 x^6+54 x^5+36 x^4+87 x^3+40 x^2+38 x+24$
- $y^2=59 x^6+8 x^5+17 x^4+27 x^3+29 x^2+79 x+62$
- $y^2=15 x^6+71 x^5+62 x^4+82 x^3+x^2+68 x+24$
- $y^2=29 x^6+29 x^5+64 x^3+79 x^2+4 x+58$
- $y^2=37 x^6+88 x^5+5 x^4+82 x^3+9 x^2+26 x+87$
- $y^2=36 x^6+68 x^5+7 x^4+19 x^3+88 x^2+41 x+87$
- $y^2=74 x^6+22 x^5+60 x^4+8 x^3+78 x^2+6$
- $y^2=22 x^6+64 x^5+5 x^4+41 x^3+34 x^2+59 x+82$
- $y^2=82 x^6+13 x^5+49 x^4+6 x^3+17 x^2+56 x+39$
- $y^2=34 x^6+19 x^5+73 x^4+39 x^3+46 x^2+14 x+1$
- and 220 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$| The isogeny class factors as 1.89.ai $\times$ 1.89.p and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.89.ax_lm | $2$ | (not in LMFDB) |
| 2.89.ah_cg | $2$ | (not in LMFDB) |
| 2.89.x_lm | $2$ | (not in LMFDB) |