L(s) = 1 | + 3-s + 4-s + 3·7-s + 3·9-s + 12-s − 9·13-s − 3·16-s − 3·17-s + 8·19-s + 3·21-s + 15·23-s + 10·25-s + 8·27-s + 3·28-s − 5·31-s + 3·36-s − 11·37-s − 9·39-s − 3·41-s + 9·43-s − 3·48-s − 49-s − 3·51-s − 9·52-s − 3·53-s + 8·57-s + 3·59-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/2·4-s + 1.13·7-s + 9-s + 0.288·12-s − 2.49·13-s − 3/4·16-s − 0.727·17-s + 1.83·19-s + 0.654·21-s + 3.12·23-s + 2·25-s + 1.53·27-s + 0.566·28-s − 0.898·31-s + 1/2·36-s − 1.80·37-s − 1.44·39-s − 0.468·41-s + 1.37·43-s − 0.433·48-s − 1/7·49-s − 0.420·51-s − 1.24·52-s − 0.412·53-s + 1.05·57-s + 0.390·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 537289 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 537289 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.338199184\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.338199184\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.78377970273907219253692813652, −10.29509219875896800510453785081, −9.463415551565282849700038220838, −9.397178829606554178172186058524, −8.912969942857574020244819670513, −8.627809487322859616127179145827, −7.87124804318195334523724994456, −7.28424320060379153650710468875, −7.21455699599743039905521877785, −7.01183242683288923836552704039, −6.49974328300329451971903432564, −5.29237342508406872728026759820, −5.05574100068455474183293127021, −4.79874725293264180007510510237, −4.48695921995988133997616854413, −3.29102066287059034490869218491, −2.96978514113318081338875493507, −2.44454355038518330941036293003, −1.72695758687764395728473617590, −0.982202205968868494059130611212,
0.982202205968868494059130611212, 1.72695758687764395728473617590, 2.44454355038518330941036293003, 2.96978514113318081338875493507, 3.29102066287059034490869218491, 4.48695921995988133997616854413, 4.79874725293264180007510510237, 5.05574100068455474183293127021, 5.29237342508406872728026759820, 6.49974328300329451971903432564, 7.01183242683288923836552704039, 7.21455699599743039905521877785, 7.28424320060379153650710468875, 7.87124804318195334523724994456, 8.627809487322859616127179145827, 8.912969942857574020244819670513, 9.397178829606554178172186058524, 9.463415551565282849700038220838, 10.29509219875896800510453785081, 10.78377970273907219253692813652