Dirichlet series
| L(s) = 1 | − 3·3-s − 2·4-s + 5-s + 3·9-s + 2·11-s + 6·12-s + 13-s − 3·15-s + 17-s − 19-s − 2·20-s − 3·23-s + 2·29-s − 4·31-s − 6·33-s − 6·36-s − 3·39-s + 16·41-s − 6·43-s − 4·44-s + 3·45-s − 4·47-s − 6·49-s − 3·51-s − 2·52-s + 53-s + 2·55-s + ⋯ |
| L(s) = 1 | − 1.73·3-s − 4-s + 0.447·5-s + 9-s + 0.603·11-s + 1.73·12-s + 0.277·13-s − 0.774·15-s + 0.242·17-s − 0.229·19-s − 0.447·20-s − 0.625·23-s + 0.371·29-s − 0.718·31-s − 1.04·33-s − 36-s − 0.480·39-s + 2.49·41-s − 0.914·43-s − 0.603·44-s + 0.447·45-s − 0.583·47-s − 6/7·49-s − 0.420·51-s − 0.277·52-s + 0.137·53-s + 0.269·55-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s)=\mathstrut & 461 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 461 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Invariants
| Degree: | \(4\) |
| Conductor: | \(461\) |
| Sign: | $1$ |
| Analytic conductor: | \(0.0293937\) |
| Root analytic conductor: | \(0.414060\) |
| Motivic weight: | \(1\) |
| Rational: | yes |
| Arithmetic: | yes |
| Character: | Trivial |
| Primitive: | yes |
| Self-dual: | yes |
| Analytic rank: | \(0\) |
| Selberg data: | \((4,\ 461,\ (\ :1/2, 1/2),\ 1)\) |
Particular Values
| \(L(1)\) | \(\approx\) | \(0.2458864264\) |
| \(L(\frac12)\) | \(\approx\) | \(0.2458864264\) |
| \(L(\frac{3}{2})\) | not available | |
| \(L(1)\) | not available |
Euler product
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | |
|---|---|---|---|---|
| bad | 461 | $C_1$$\times$$C_2$ | \( ( 1 + T )( 1 + p T^{2} ) \) | |
| good | 2 | $C_2^2$ | \( 1 + p T^{2} + p^{2} T^{4} \) | 2.2.a_c |
| 3 | $C_2$ | \( ( 1 + p T^{2} )( 1 + p T + p T^{2} ) \) | 2.3.d_g | |
| 5 | $D_{4}$ | \( 1 - T + T^{2} - p T^{3} + p^{2} T^{4} \) | 2.5.ab_b | |
| 7 | $C_2^2$ | \( 1 + 6 T^{2} + p^{2} T^{4} \) | 2.7.a_g | |
| 11 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) | 2.11.ac_o | |
| 13 | $D_{4}$ | \( 1 - T - 2 T^{2} - p T^{3} + p^{2} T^{4} \) | 2.13.ab_ac | |
| 17 | $D_{4}$ | \( 1 - T - 13 T^{2} - p T^{3} + p^{2} T^{4} \) | 2.17.ab_an | |
| 19 | $D_{4}$ | \( 1 + T + 17 T^{2} + p T^{3} + p^{2} T^{4} \) | 2.19.b_r | |
| 23 | $D_{4}$ | \( 1 + 3 T + 7 T^{2} + 3 p T^{3} + p^{2} T^{4} \) | 2.23.d_h | |
| 29 | $C_2^2$ | \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \) | 2.29.ac_c | |
| 31 | $D_{4}$ | \( 1 + 4 T + 16 T^{2} + 4 p T^{3} + p^{2} T^{4} \) | 2.31.e_q | |
| 37 | $C_2^2$ | \( 1 + 30 T^{2} + p^{2} T^{4} \) | 2.37.a_be | |
| 41 | $D_{4}$ | \( 1 - 16 T + 138 T^{2} - 16 p T^{3} + p^{2} T^{4} \) | 2.41.aq_fi | |
| 43 | $D_{4}$ | \( 1 + 6 T + 42 T^{2} + 6 p T^{3} + p^{2} T^{4} \) | 2.43.g_bq | |
| 47 | $D_{4}$ | \( 1 + 4 T + 48 T^{2} + 4 p T^{3} + p^{2} T^{4} \) | 2.47.e_bw | |
| 53 | $D_{4}$ | \( 1 - T + 23 T^{2} - p T^{3} + p^{2} T^{4} \) | 2.53.ab_x | |
| 59 | $C_2$$\times$$C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) | 2.59.aj_de | |
| 61 | $D_{4}$ | \( 1 + 5 T - 7 T^{2} + 5 p T^{3} + p^{2} T^{4} \) | 2.61.f_ah | |
| 67 | $D_{4}$ | \( 1 - 5 T + 106 T^{2} - 5 p T^{3} + p^{2} T^{4} \) | 2.67.af_ec | |
| 71 | $D_{4}$ | \( 1 - 12 T + 134 T^{2} - 12 p T^{3} + p^{2} T^{4} \) | 2.71.am_fe | |
| 73 | $C_2$$\times$$C_2$ | \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) | 2.73.m_gk | |
| 79 | $C_2$$\times$$C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 11 T + p T^{2} ) \) | 2.79.ad_e | |
| 83 | $D_{4}$ | \( 1 + 10 T + 124 T^{2} + 10 p T^{3} + p^{2} T^{4} \) | 2.83.k_eu | |
| 89 | $D_{4}$ | \( 1 + 7 T + 44 T^{2} + 7 p T^{3} + p^{2} T^{4} \) | 2.89.h_bs | |
| 97 | $D_{4}$ | \( 1 - 5 T + 145 T^{2} - 5 p T^{3} + p^{2} T^{4} \) | 2.97.af_fp | |
| show more | ||||
| show less | ||||
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.5818249319, −18.8664797957, −18.1284338381, −17.8116839057, −17.4484695511, −16.7423739165, −16.3619168852, −15.5940585516, −14.4257598969, −14.1852060086, −13.1711538133, −12.7237105692, −11.8277861803, −11.3431082453, −10.6307297187, −9.74673643577, −9.11211751757, −8.10584670363, −6.73127813828, −5.94451781406, −5.24079847106, −4.16569729781, 4.16569729781, 5.24079847106, 5.94451781406, 6.73127813828, 8.10584670363, 9.11211751757, 9.74673643577, 10.6307297187, 11.3431082453, 11.8277861803, 12.7237105692, 13.1711538133, 14.1852060086, 14.4257598969, 15.5940585516, 16.3619168852, 16.7423739165, 17.4484695511, 17.8116839057, 18.1284338381, 18.8664797957, 19.5818249319