Invariants
| Base field: | $\F_{37}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 + 30 x^{2} + 1369 x^{4}$ | 
| Frobenius angles: | $\pm0.316434817838$, $\pm0.683565182162$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{11}, \sqrt{-26})\) | 
| Galois group: | $C_2^2$ | 
| Jacobians: | $234$ | 
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1400$ | $1960000$ | $2565630200$ | $3519376000000$ | $4808584493027000$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $1430$ | $50654$ | $1877838$ | $69343958$ | $2565533990$ | $94931877134$ | $3512480194078$ | $129961739795078$ | $4808584613636150$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 234 curves (of which all are hyperelliptic):
- $y^2=23 x^6+11 x^5+3 x^4+14 x^3+4 x^2+29 x+13$
- $y^2=9 x^6+22 x^5+6 x^4+28 x^3+8 x^2+21 x+26$
- $y^2=30 x^6+23 x^5+4 x^4+33 x^3+2 x^2+28 x+9$
- $y^2=2 x^5+33 x^4+24 x^3+21 x^2+14 x+36$
- $y^2=4 x^5+29 x^4+11 x^3+5 x^2+28 x+35$
- $y^2=13 x^6+x^5+8 x^4+13 x^3+17 x^2+24 x+27$
- $y^2=26 x^6+2 x^5+16 x^4+26 x^3+34 x^2+11 x+17$
- $y^2=16 x^6+33 x^5+33 x^4+25 x^3+32 x^2+22 x+28$
- $y^2=32 x^6+29 x^5+29 x^4+13 x^3+27 x^2+7 x+19$
- $y^2=11 x^6+21 x^5+5 x^3+20 x^2+28 x+24$
- $y^2=22 x^6+5 x^5+10 x^3+3 x^2+19 x+11$
- $y^2=x^6+16 x^5+35 x^4+20 x^3+5 x^2+14 x+27$
- $y^2=2 x^6+32 x^5+33 x^4+3 x^3+10 x^2+28 x+17$
- $y^2=35 x^6+31 x^5+36 x^4+2 x^3+34 x^2+31 x+8$
- $y^2=33 x^6+25 x^5+35 x^4+4 x^3+31 x^2+25 x+16$
- $y^2=34 x^6+25 x^5+16 x^4+29 x^3+26 x^2+14 x+17$
- $y^2=20 x^6+6 x^5+12 x^3+5 x^2+12 x+31$
- $y^2=16 x^6+24 x^5+21 x^4+23 x^3+19 x^2+30 x+16$
- $y^2=32 x^6+11 x^5+5 x^4+9 x^3+x^2+23 x+32$
- $y^2=31 x^6+19 x^5+6 x^4+9 x^3+26 x^2+15 x+12$
- and 214 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{2}}$.
Endomorphism algebra over $\F_{37}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{11}, \sqrt{-26})\). | 
| The base change of $A$ to $\F_{37^{2}}$ is 1.1369.be 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-286}) \)$)$ | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.37.a_abe | $4$ | (not in LMFDB) | 
