Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 5 x + 145 x^{2} - 485 x^{3} + 9409 x^{4}$ |
| Frobenius angles: | $\pm0.331760377220$, $\pm0.580574254418$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.5139098861.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $408$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $9065$ | $91057925$ | $833514358145$ | $7837412515953125$ | $73743169235668909200$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $93$ | $9675$ | $913269$ | $88529043$ | $8587428358$ | $832970275275$ | $80798257341069$ | $7837433754468963$ | $760231061722081173$ | $73742412684729922750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 408 curves (of which all are hyperelliptic):
- $y^2=31 x^6+26 x^5+5 x^4+63 x^3+68 x^2+83 x+19$
- $y^2=69 x^6+41 x^5+78 x^4+73 x^3+73 x^2+37 x+36$
- $y^2=88 x^6+36 x^5+27 x^4+58 x^3+24 x^2+50 x+2$
- $y^2=50 x^6+44 x^5+x^4+59 x^3+49 x^2+37 x+95$
- $y^2=37 x^6+32 x^4+89 x^3+13 x^2+59 x+22$
- $y^2=9 x^6+44 x^5+24 x^4+12 x^3+25 x^2+71 x+90$
- $y^2=49 x^6+67 x^5+29 x^3+60 x^2+24 x+45$
- $y^2=30 x^6+73 x^5+18 x^4+21 x^3+77 x^2+67 x+67$
- $y^2=13 x^6+33 x^5+81 x^4+83 x^3+30 x^2+83 x+26$
- $y^2=82 x^6+44 x^5+88 x^4+23 x^3+93 x^2+52 x+64$
- $y^2=29 x^6+66 x^5+73 x^4+20 x^3+21 x^2+65 x+88$
- $y^2=93 x^6+75 x^5+91 x^4+32 x^3+72 x^2+15 x+82$
- $y^2=94 x^6+15 x^5+38 x^4+9 x^3+67 x^2+33 x+40$
- $y^2=90 x^6+71 x^5+14 x^4+38 x^3+83 x^2+23 x+85$
- $y^2=6 x^6+15 x^5+50 x^4+48 x^3+8 x^2+71 x+61$
- $y^2=93 x^6+90 x^5+15 x^4+92 x^3+47 x^2+13 x+11$
- $y^2=74 x^6+43 x^5+84 x^4+39 x^3+58 x^2+49 x+28$
- $y^2=76 x^6+94 x^5+6 x^4+24 x^3+26 x^2+65 x+28$
- $y^2=86 x^6+25 x^5+25 x^4+2 x^3+25 x^2+53 x+72$
- $y^2=53 x^6+19 x^5+36 x^4+25 x^3+15 x^2+89 x+43$
- and 388 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$| The endomorphism algebra of this simple isogeny class is 4.0.5139098861.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.97.f_fp | $2$ | (not in LMFDB) |