Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 12 x + 59 x^{2} )( 1 + 3 x + 59 x^{2} )$ |
| $1 - 9 x + 82 x^{2} - 531 x^{3} + 3481 x^{4}$ | |
| Frobenius angles: | $\pm0.214641822575$, $\pm0.562562653022$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $300$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3024$ | $12410496$ | $42158563776$ | $146846995352064$ | $511185790852483824$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $51$ | $3565$ | $205272$ | $12118729$ | $715020861$ | $42180944326$ | $2488648364799$ | $146830422363409$ | $8662995819272808$ | $511116751469634925$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 300 curves (of which all are hyperelliptic):
- $y^2=39 x^6+2 x^5+28 x^4+55 x^3+x^2+56 x+31$
- $y^2=56 x^6+40 x^5+27 x^4+38 x^3+5 x^2+15 x+2$
- $y^2=16 x^6+2 x^5+24 x^4+5 x^3+30 x^2+24 x+56$
- $y^2=48 x^6+24 x^5+55 x^4+9 x^3+34 x^2+26 x+38$
- $y^2=28 x^6+x^5+19 x^4+43 x^3+44 x^2+17$
- $y^2=53 x^6+4 x^5+21 x^4+47 x^3+29 x^2+17 x+40$
- $y^2=45 x^6+47 x^5+57 x^4+19 x^3+7 x^2+31 x+2$
- $y^2=22 x^6+42 x^5+51 x^4+6 x^3+13 x^2+16 x+32$
- $y^2=4 x^6+18 x^5+25 x^4+x^3+30 x^2+45 x+58$
- $y^2=18 x^6+51 x^5+56 x^4+43 x^3+7 x^2+2 x+33$
- $y^2=32 x^6+43 x^5+24 x^4+17 x^3+48 x^2+19 x+40$
- $y^2=8 x^6+31 x^5+15 x^4+9 x^3+44 x^2+2 x+42$
- $y^2=31 x^6+41 x^5+45 x^4+17 x^3+33 x^2+27 x+36$
- $y^2=26 x^6+7 x^5+7 x^4+34 x^3+52 x^2+38 x+5$
- $y^2=39 x^6+20 x^5+9 x^4+x^3+42 x^2+56 x+4$
- $y^2=36 x^6+45 x^5+45 x^4+2 x^3+48 x^2+43 x+47$
- $y^2=54 x^6+47 x^5+57 x^4+31 x^3+26 x^2+51 x+35$
- $y^2=5 x^6+2 x^5+52 x^4+3 x^3+53 x^2+3 x+39$
- $y^2=12 x^6+48 x^5+21 x^4+56 x^3+31 x^2+39 x+50$
- $y^2=23 x^6+31 x^5+5 x^4+16 x^3+55 x^2+11 x+31$
- and 280 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The isogeny class factors as 1.59.am $\times$ 1.59.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.ap_fy | $2$ | (not in LMFDB) |
| 2.59.j_de | $2$ | (not in LMFDB) |
| 2.59.p_fy | $2$ | (not in LMFDB) |