Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 3 x + 7 x^{2} + 69 x^{3} + 529 x^{4}$ |
| Frobenius angles: | $\pm0.328453150537$, $\pm0.809383195913$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.53932725.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $64$ |
| Isomorphism classes: | 128 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $609$ | $283185$ | $150130071$ | $78692863725$ | $41380116180144$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $27$ | $535$ | $12339$ | $281203$ | $6429132$ | $148033555$ | $3404698569$ | $78311159923$ | $1801157001957$ | $41426506959550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=7 x^6+12 x^5+6 x^4+22 x^3+3 x^2+10 x+10$
- $y^2=16 x^6+21 x^5+15 x^4+16 x^3+x^2+17 x+18$
- $y^2=13 x^6+13 x^5+4 x^4+15 x^3+22 x^2+16 x+8$
- $y^2=16 x^5+7 x^4+19 x^3+13 x^2+16 x+2$
- $y^2=3 x^6+20 x^5+3 x^4+8 x^3+4 x^2+21 x+14$
- $y^2=x^6+14 x^5+12 x^4+18 x^3+8 x^2+15 x+19$
- $y^2=21 x^6+19 x^5+7 x^4+5 x^3+18 x^2+22 x+11$
- $y^2=x^6+5 x^5+17 x^4+12 x^3+x^2+5 x+1$
- $y^2=16 x^6+5 x^5+12 x^4+x^3+x^2+20 x+12$
- $y^2=5 x^5+22 x^4+4 x^3+12 x^2+6 x+9$
- $y^2=18 x^6+7 x^4+19 x^3+21 x^2+4 x+16$
- $y^2=12 x^6+14 x^5+14 x^4+16 x^3+9 x^2+7 x+1$
- $y^2=18 x^6+13 x^5+20 x^4+15 x^3+19 x^2+7 x+1$
- $y^2=6 x^6+12 x^5+18 x^4+5 x^3+16 x^2+11 x+6$
- $y^2=14 x^6+15 x^5+20 x^4+17 x^3+8 x^2+7 x+13$
- $y^2=10 x^6+13 x^5+4 x^4+8 x^3+21 x^2+4 x+17$
- $y^2=6 x^6+13 x^5+3 x^4+18 x^3+16 x^2+18 x+20$
- $y^2=2 x^6+12 x^5+9 x^4+6 x^3+3 x^2+13 x+14$
- $y^2=8 x^6+17 x^5+20 x^4+12 x^3+22 x^2+22 x+19$
- $y^2=19 x^6+6 x^5+12 x^4+10 x^3+7 x^2+3 x+22$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$| The endomorphism algebra of this simple isogeny class is 4.0.53932725.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.23.ad_h | $2$ | (not in LMFDB) |