Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 48 x^{2} + 188 x^{3} + 2209 x^{4}$ |
Frobenius angles: | $\pm0.379410570536$, $\pm0.730111939461$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1097984.2 |
Galois group: | $D_{4}$ |
Jacobians: | $140$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2450$ | $5061700$ | $10784510450$ | $23830989770000$ | $52589382258411250$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $52$ | $2290$ | $103876$ | $4883718$ | $229302492$ | $10779005170$ | $506625128236$ | $23811287795838$ | $1119130505621332$ | $52599132138102450$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 140 curves (of which all are hyperelliptic):
- $y^2=15 x^6+12 x^5+7 x^4+28 x^3+42 x^2+7 x+26$
- $y^2=36 x^6+16 x^5+43 x^4+14 x^3+30 x^2+16 x+25$
- $y^2=3 x^6+38 x^5+38 x^4+46 x^3+18 x^2+17 x+46$
- $y^2=34 x^6+32 x^5+25 x^4+10 x^3+36 x^2+10 x+42$
- $y^2=20 x^6+37 x^5+7 x^4+27 x^3+42 x^2+15 x+42$
- $y^2=21 x^6+10 x^5+13 x^4+24 x^3+17 x^2+24 x+45$
- $y^2=40 x^6+25 x^5+33 x^4+19 x^3+31 x^2+34 x+30$
- $y^2=4 x^6+18 x^5+27 x^4+43 x^3+13 x^2+43 x+5$
- $y^2=12 x^5+28 x^4+31 x^3+36 x^2+39 x+30$
- $y^2=41 x^6+9 x^5+12 x^4+20 x^3+35 x^2+15 x+12$
- $y^2=37 x^6+2 x^5+37 x^4+16 x^3+25 x^2+37 x+5$
- $y^2=32 x^6+13 x^4+24 x^3+10 x^2+21 x$
- $y^2=29 x^6+21 x^5+44 x^4+18 x^3+32 x^2+15 x+37$
- $y^2=36 x^6+9 x^5+44 x^4+34 x^3+34 x^2+21 x+14$
- $y^2=12 x^5+16 x^4+16 x^3+29 x^2+32 x+44$
- $y^2=19 x^6+4 x^5+11 x^4+42 x^3+26 x^2+x+45$
- $y^2=3 x^6+23 x^5+17 x^4+46 x^3+8 x^2+21 x+28$
- $y^2=46 x^6+24 x^5+5 x^4+31 x^3+11 x^2+36 x+22$
- $y^2=41 x^6+38 x^5+13 x^4+18 x^3+25 x^2+5 x+27$
- $y^2=8 x^6+29 x^5+4 x^4+28 x^3+14 x^2+16 x+12$
- and 120 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$The endomorphism algebra of this simple isogeny class is 4.0.1097984.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.ae_bw | $2$ | (not in LMFDB) |