Properties

Label 4-72e3-1.1-c1e2-0-19
Degree $4$
Conductor $373248$
Sign $-1$
Analytic cond. $23.7986$
Root an. cond. $2.20870$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2·7-s − 8-s + 2·13-s − 2·14-s + 16-s − 6·17-s − 12·23-s − 25-s − 2·26-s + 2·28-s + 2·31-s − 32-s + 6·34-s + 8·37-s − 18·43-s + 12·46-s − 6·47-s − 7·49-s + 50-s + 2·52-s + 12·53-s − 2·56-s + 24·59-s + 8·61-s − 2·62-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.755·7-s − 0.353·8-s + 0.554·13-s − 0.534·14-s + 1/4·16-s − 1.45·17-s − 2.50·23-s − 1/5·25-s − 0.392·26-s + 0.377·28-s + 0.359·31-s − 0.176·32-s + 1.02·34-s + 1.31·37-s − 2.74·43-s + 1.76·46-s − 0.875·47-s − 49-s + 0.141·50-s + 0.277·52-s + 1.64·53-s − 0.267·56-s + 3.12·59-s + 1.02·61-s − 0.254·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(373248\)    =    \(2^{9} \cdot 3^{6}\)
Sign: $-1$
Analytic conductor: \(23.7986\)
Root analytic conductor: \(2.20870\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 373248,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_1$ \( 1 + T \)
3 \( 1 \)
good5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.5.a_b
7$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + T + p T^{2} ) \) 2.7.ac_l
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.11.a_n
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.13.ac_c
17$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.17.g_bi
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.19.a_bi
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.23.m_de
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.29.a_w
31$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.31.ac_bv
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.37.ai_di
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.41.a_bu
43$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.43.s_gk
47$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.47.g_w
53$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 3 T + p T^{2} ) \) 2.53.am_fd
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \) 2.59.ay_kc
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.61.ai_es
67$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.67.ak_da
71$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \) 2.71.ag_fm
73$C_2$$\times$$C_2$ \( ( 1 + 7 T + p T^{2} )( 1 + 11 T + p T^{2} ) \) 2.73.s_ip
79$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 8 T + p T^{2} ) \) 2.79.au_ju
83$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) 2.83.m_hl
89$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 18 T + p T^{2} ) \) 2.89.s_gw
97$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 17 T + p T^{2} ) \) 2.97.s_id
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.1830201225, −12.8524075832, −11.9118486001, −11.7088142284, −11.5322307280, −11.1580189822, −10.5120811325, −10.1152647782, −9.87204525884, −9.40534570676, −8.76001229423, −8.26804890939, −8.18741374225, −7.88056020760, −6.88360669588, −6.73860900675, −6.34669118392, −5.47723731973, −5.37363015538, −4.37746956078, −4.10643823878, −3.48928984064, −2.44850978333, −2.10032734759, −1.32155344015, 0, 1.32155344015, 2.10032734759, 2.44850978333, 3.48928984064, 4.10643823878, 4.37746956078, 5.37363015538, 5.47723731973, 6.34669118392, 6.73860900675, 6.88360669588, 7.88056020760, 8.18741374225, 8.26804890939, 8.76001229423, 9.40534570676, 9.87204525884, 10.1152647782, 10.5120811325, 11.1580189822, 11.5322307280, 11.7088142284, 11.9118486001, 12.8524075832, 13.1830201225

Graph of the $Z$-function along the critical line