Invariants
This isogeny class is not simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$4896$ |
$39638016$ |
$244322586144$ |
$1517729485307904$ |
$9468211773550802976$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$60$ |
$6350$ |
$495540$ |
$38966014$ |
$3077035500$ |
$243086266766$ |
$19203900089700$ |
$1517108801467774$ |
$119851596325745820$ |
$9468276084995468750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 90 curves (of which all are hyperelliptic):
- $y^2=41 x^6+47 x^5+68 x^4+8 x^3+68 x^2+47 x+41$
- $y^2=76 x^5+34 x^4+59 x^3+54 x^2+7 x+45$
- $y^2=65 x^6+62 x^5+74 x^4+19 x^3+63 x^2+25 x+38$
- $y^2=68 x^5+24 x^4+10 x^3+24 x^2+68 x$
- $y^2=19 x^6+36 x^5+19 x^4+49 x^3+55 x^2+50 x+72$
- $y^2=66 x^6+33 x^5+59 x^4+35 x^3+3 x^2+12 x+28$
- $y^2=43 x^6+49 x^5+8 x^4+63 x^3+42 x^2+5 x+67$
- $y^2=72 x^6+32 x^5+7 x^4+61 x^3+43 x^2+8 x+9$
- $y^2=59 x^6+53 x^5+33 x^4+36 x^3+28 x^2+28 x+54$
- $y^2=20 x^6+72 x^5+28 x^4+38 x^3+28 x^2+72 x+20$
- $y^2=7 x^6+55 x^5+26 x^4+9 x^3+20 x^2+26 x+60$
- $y^2=17 x^6+29 x^5+45 x^4+39 x^3+58 x^2+16 x+33$
- $y^2=5 x^6+41 x^5+11 x^4+55 x^3+73 x^2+69 x+11$
- $y^2=36 x^5+68 x^4+50 x^3+41 x^2+62 x+23$
- $y^2=42 x^6+47 x^5+3 x^4+70 x^3+3 x^2+47 x+42$
- $y^2=52 x^6+32 x^5+14 x^4+62 x^3+41 x^2+31 x+65$
- $y^2=40 x^6+2 x^5+50 x^4+49 x^3+63 x^2+35 x+54$
- $y^2=51 x^6+13 x^5+43 x^4+41 x^3+55 x^2+34 x+33$
- $y^2=5 x^6+48 x^5+x^4+64 x^3+12 x^2+41 x+29$
- $y^2=40 x^6+14 x^5+13 x^4+27 x^3+23 x^2+70 x+50$
- and 70 more
- $y^2=59 x^6+47 x^5+33 x^4+50 x^3+33 x^2+47 x+59$
- $y^2=72 x^6+37 x^5+4 x^4+68 x^3+45 x^2+7 x+23$
- $y^2=25 x^6+14 x^5+4 x^4+31 x^3+4 x^2+14 x+25$
- $y^2=66 x^6+45 x^5+53 x^4+64 x^3+69 x^2+38 x+70$
- $y^2=3 x^6+56 x^5+6 x^4+68 x^3+63 x^2+53 x+66$
- $y^2=35 x^6+45 x^5+59 x^4+29 x^3+43 x^2+59 x+3$
- $y^2=19 x^6+47 x^5+37 x^4+9 x^3+18 x^2+43 x+78$
- $y^2=7 x^6+7 x^5+8 x^4+24 x^3+x^2+68 x+48$
- $y^2=66 x^6+61 x^5+47 x^4+43 x^3+55 x^2+59 x+73$
- $y^2=25 x^5+73 x^4+59 x^3+26 x^2+28 x+49$
- $y^2=71 x^6+59 x^4+8 x^3+46 x^2+56 x+16$
- $y^2=34 x^6+32 x^5+9 x^4+72 x^3+9 x^2+32 x+34$
- $y^2=66 x^6+27 x^5+72 x^4+20 x^3+23 x^2+69 x+59$
- $y^2=3 x^6+56 x^5+6 x^4+6 x^3+52 x^2+38 x+48$
- $y^2=38 x^6+20 x^5+20 x^4+49 x^3+20 x^2+20 x+38$
- $y^2=62 x^6+51 x^5+49 x^4+60 x^3+64 x^2+72 x+67$
- $y^2=54 x^6+41 x^5+69 x^4+68 x^3+61 x^2+57 x+28$
- $y^2=52 x^6+69 x^5+77 x^4+4 x^3+77 x^2+69 x+52$
- $y^2=71 x^6+72 x^5+71 x^4+31 x^3+28 x^2+56 x+14$
- $y^2=69 x^6+2 x^5+32 x^4+33 x^3+32 x^2+2 x+69$
- $y^2=37 x^6+17 x^5+7 x^4+14 x^3+7 x^2+17 x+37$
- $y^2=38 x^6+52 x^5+11 x^4+4 x^3+67 x^2+9 x+21$
- $y^2=59 x^6+77 x^5+72 x^4+41 x^3+26 x^2+24 x+34$
- $y^2=48 x^6+15 x^5+21 x^4+43 x^3+21 x^2+15 x+48$
- $y^2=63 x^6+65 x^5+51 x^4+77 x^3+73 x^2+54 x+30$
- $y^2=66 x^6+52 x^5+58 x^4+62 x^3+77 x^2+63 x+65$
- $y^2=34 x^6+45 x^5+37 x^4+77 x^3+14 x^2+33 x+69$
- $y^2=69 x^6+45 x^5+31 x^4+14 x^3+31 x^2+45 x+69$
- $y^2=9 x^6+x^5+71 x^4+40 x^3+71 x^2+x+9$
- $y^2=7 x^6+71 x^5+14 x^4+68 x^3+53 x^2+24 x+39$
- $y^2=7 x^6+51 x^5+30 x^4+72 x^3+77 x^2+47 x+44$
- $y^2=33 x^6+45 x^5+45 x^4+62 x^3+45 x^2+45 x+33$
- $y^2=37 x^6+45 x^5+17 x^4+22 x^3+41 x^2+78 x+40$
- $y^2=14 x^6+14 x^5+25 x^4+78 x^3+25 x^2+14 x+14$
- $y^2=17 x^6+5 x^5+61 x^4+x^3+61 x^2+5 x+17$
- $y^2=42 x^6+49 x^5+74 x^4+12 x^3+74 x^2+49 x+42$
- $y^2=33 x^6+29 x^5+25 x^4+74 x^3+25 x^2+29 x+33$
- $y^2=27 x^6+61 x^5+74 x^4+40 x^3+60 x^2+15 x+33$
- $y^2=13 x^6+69 x^5+22 x^4+18 x^3+67 x^2+14 x+76$
- $y^2=14 x^6+3 x^5+13 x^4+57 x^3+68 x^2+18 x+41$
- $y^2=41 x^6+22 x^5+74 x^4+23 x^3+2 x^2+59 x+67$
- $y^2=47 x^6+65 x^5+67 x^4+67 x^3+72 x^2+49 x+39$
- $y^2=77 x^6+62 x^5+72 x^4+13 x^3+72 x^2+62 x+77$
- $y^2=14 x^6+19 x^5+24 x^4+67 x^3+28 x^2+77 x+53$
- $y^2=48 x^6+75 x^5+61 x^4+56 x^3+61 x^2+75 x+48$
- $y^2=48 x^6+78 x^5+52 x^4+75 x^3+52 x^2+78 x+48$
- $y^2=71 x^6+67 x^5+15 x^4+56 x^3+15 x^2+67 x+71$
- $y^2=5 x^6+77 x^5+27 x^4+36 x^3+27 x^2+77 x+5$
- $y^2=12 x^6+20 x^5+18 x^4+43 x^3+18 x^2+20 x+12$
- $y^2=63 x^6+40 x^5+58 x^4+51 x^3+58 x^2+40 x+63$
- $y^2=21 x^6+64 x^5+42 x^4+38 x^3+42 x^2+64 x+21$
- $y^2=7 x^6+48 x^5+68 x^4+74 x^3+61 x^2+59 x+36$
- $y^2=70 x^6+67 x^5+76 x^4+3 x^3+76 x^2+67 x+70$
- $y^2=77 x^6+28 x^5+57 x^4+50 x^3+57 x^2+28 x+77$
- $y^2=45 x^6+71 x^5+55 x^4+29 x^3+55 x^2+71 x+45$
- $y^2=8 x^6+74 x^5+29 x^4+31 x^3+29 x^2+74 x+8$
- $y^2=74 x^6+72 x^5+10 x^4+5 x^3+x^2+26 x+47$
- $y^2=39 x^6+2 x^5+18 x^4+7 x^3+10 x^2+12 x+63$
- $y^2=48 x^6+35 x^5+67 x^4+13 x^3+40 x^2+29 x+48$
- $y^2=15 x^6+35 x^5+62 x^4+35 x^3+x^2+39 x+66$
- $y^2=9 x^6+52 x^5+74 x^4+29 x^3+74 x^2+52 x+9$
- $y^2=53 x^5+24 x^4+22 x^3+47 x^2+24 x$
- $y^2=3 x^6+27 x^5+6 x^4+53 x^3+6 x^2+27 x+3$
- $y^2=51 x^6+35 x^5+13 x^4+12 x^3+76 x^2+33 x+31$
- $y^2=4 x^6+14 x^5+6 x^4+34 x^3+75 x^2+12 x+67$
- $y^2=61 x^6+x^5+18 x^4+51 x^3+25 x^2+9 x+12$
- $y^2=27 x^6+66 x^5+74 x^4+12 x^3+14 x^2+15 x+69$
- $y^2=47 x^6+51 x^5+52 x^4+23 x^3+9 x^2+32 x+48$
- $y^2=75 x^6+47 x^5+54 x^4+76 x^3+11 x^2+41 x+58$
- $y^2=26 x^6+6 x^5+6 x^4+54 x^3+78 x^2+66 x+5$
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$
The isogeny class factors as 1.79.am $\times$ 1.79.ai and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.