Properties

Label 2.79.au_ju
Base field $\F_{79}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{79}$
Dimension:  $2$
L-polynomial:  $( 1 - 12 x + 79 x^{2} )( 1 - 8 x + 79 x^{2} )$
  $1 - 20 x + 254 x^{2} - 1580 x^{3} + 6241 x^{4}$
Frobenius angles:  $\pm0.264120855861$, $\pm0.351411445414$
Angle rank:  $2$ (numerical)
Jacobians:  $90$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4896$ $39638016$ $244322586144$ $1517729485307904$ $9468211773550802976$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $60$ $6350$ $495540$ $38966014$ $3077035500$ $243086266766$ $19203900089700$ $1517108801467774$ $119851596325745820$ $9468276084995468750$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 90 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{79}$.

Endomorphism algebra over $\F_{79}$
The isogeny class factors as 1.79.am $\times$ 1.79.ai and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.79.ae_ck$2$(not in LMFDB)
2.79.e_ck$2$(not in LMFDB)
2.79.u_ju$2$(not in LMFDB)