-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 4896, 'abvar_counts': [4896, 39638016, 244322586144, 1517729485307904, 9468211773550802976, 59091222060730111988736, 368789949501917247893680416, 2301619128293540535049367322624, 14364405100705150165030818123995424, 89648251999270358214925794799949976576], 'abvar_counts_str': '4896 39638016 244322586144 1517729485307904 9468211773550802976 59091222060730111988736 368789949501917247893680416 2301619128293540535049367322624 14364405100705150165030818123995424 89648251999270358214925794799949976576 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.264120855860826, 0.351411445414278], 'center_dim': 4, 'cohen_macaulay_max': 3, 'curve_count': 60, 'curve_counts': [60, 6350, 495540, 38966014, 3077035500, 243086266766, 19203900089700, 1517108801467774, 119851596325745820, 9468276084995468750], 'curve_counts_str': '60 6350 495540 38966014 3077035500 243086266766 19203900089700 1517108801467774 119851596325745820 9468276084995468750 ', 'curves': ['y^2=41*x^6+47*x^5+68*x^4+8*x^3+68*x^2+47*x+41', 'y^2=76*x^5+34*x^4+59*x^3+54*x^2+7*x+45', 'y^2=65*x^6+62*x^5+74*x^4+19*x^3+63*x^2+25*x+38', 'y^2=68*x^5+24*x^4+10*x^3+24*x^2+68*x', 'y^2=19*x^6+36*x^5+19*x^4+49*x^3+55*x^2+50*x+72', 'y^2=66*x^6+33*x^5+59*x^4+35*x^3+3*x^2+12*x+28', 'y^2=43*x^6+49*x^5+8*x^4+63*x^3+42*x^2+5*x+67', 'y^2=72*x^6+32*x^5+7*x^4+61*x^3+43*x^2+8*x+9', 'y^2=59*x^6+53*x^5+33*x^4+36*x^3+28*x^2+28*x+54', 'y^2=20*x^6+72*x^5+28*x^4+38*x^3+28*x^2+72*x+20', 'y^2=7*x^6+55*x^5+26*x^4+9*x^3+20*x^2+26*x+60', 'y^2=17*x^6+29*x^5+45*x^4+39*x^3+58*x^2+16*x+33', 'y^2=5*x^6+41*x^5+11*x^4+55*x^3+73*x^2+69*x+11', 'y^2=36*x^5+68*x^4+50*x^3+41*x^2+62*x+23', 'y^2=42*x^6+47*x^5+3*x^4+70*x^3+3*x^2+47*x+42', 'y^2=52*x^6+32*x^5+14*x^4+62*x^3+41*x^2+31*x+65', 'y^2=40*x^6+2*x^5+50*x^4+49*x^3+63*x^2+35*x+54', 'y^2=51*x^6+13*x^5+43*x^4+41*x^3+55*x^2+34*x+33', 'y^2=5*x^6+48*x^5+x^4+64*x^3+12*x^2+41*x+29', 'y^2=40*x^6+14*x^5+13*x^4+27*x^3+23*x^2+70*x+50', 'y^2=59*x^6+47*x^5+33*x^4+50*x^3+33*x^2+47*x+59', 'y^2=72*x^6+37*x^5+4*x^4+68*x^3+45*x^2+7*x+23', 'y^2=25*x^6+14*x^5+4*x^4+31*x^3+4*x^2+14*x+25', 'y^2=66*x^6+45*x^5+53*x^4+64*x^3+69*x^2+38*x+70', 'y^2=3*x^6+56*x^5+6*x^4+68*x^3+63*x^2+53*x+66', 'y^2=35*x^6+45*x^5+59*x^4+29*x^3+43*x^2+59*x+3', 'y^2=19*x^6+47*x^5+37*x^4+9*x^3+18*x^2+43*x+78', 'y^2=7*x^6+7*x^5+8*x^4+24*x^3+x^2+68*x+48', 'y^2=66*x^6+61*x^5+47*x^4+43*x^3+55*x^2+59*x+73', 'y^2=25*x^5+73*x^4+59*x^3+26*x^2+28*x+49', 'y^2=71*x^6+59*x^4+8*x^3+46*x^2+56*x+16', 'y^2=34*x^6+32*x^5+9*x^4+72*x^3+9*x^2+32*x+34', 'y^2=66*x^6+27*x^5+72*x^4+20*x^3+23*x^2+69*x+59', 'y^2=3*x^6+56*x^5+6*x^4+6*x^3+52*x^2+38*x+48', 'y^2=38*x^6+20*x^5+20*x^4+49*x^3+20*x^2+20*x+38', 'y^2=62*x^6+51*x^5+49*x^4+60*x^3+64*x^2+72*x+67', 'y^2=54*x^6+41*x^5+69*x^4+68*x^3+61*x^2+57*x+28', 'y^2=52*x^6+69*x^5+77*x^4+4*x^3+77*x^2+69*x+52', 'y^2=71*x^6+72*x^5+71*x^4+31*x^3+28*x^2+56*x+14', 'y^2=69*x^6+2*x^5+32*x^4+33*x^3+32*x^2+2*x+69', 'y^2=37*x^6+17*x^5+7*x^4+14*x^3+7*x^2+17*x+37', 'y^2=38*x^6+52*x^5+11*x^4+4*x^3+67*x^2+9*x+21', 'y^2=59*x^6+77*x^5+72*x^4+41*x^3+26*x^2+24*x+34', 'y^2=48*x^6+15*x^5+21*x^4+43*x^3+21*x^2+15*x+48', 'y^2=63*x^6+65*x^5+51*x^4+77*x^3+73*x^2+54*x+30', 'y^2=66*x^6+52*x^5+58*x^4+62*x^3+77*x^2+63*x+65', 'y^2=34*x^6+45*x^5+37*x^4+77*x^3+14*x^2+33*x+69', 'y^2=69*x^6+45*x^5+31*x^4+14*x^3+31*x^2+45*x+69', 'y^2=9*x^6+x^5+71*x^4+40*x^3+71*x^2+x+9', 'y^2=7*x^6+71*x^5+14*x^4+68*x^3+53*x^2+24*x+39', 'y^2=7*x^6+51*x^5+30*x^4+72*x^3+77*x^2+47*x+44', 'y^2=33*x^6+45*x^5+45*x^4+62*x^3+45*x^2+45*x+33', 'y^2=37*x^6+45*x^5+17*x^4+22*x^3+41*x^2+78*x+40', 'y^2=14*x^6+14*x^5+25*x^4+78*x^3+25*x^2+14*x+14', 'y^2=17*x^6+5*x^5+61*x^4+x^3+61*x^2+5*x+17', 'y^2=42*x^6+49*x^5+74*x^4+12*x^3+74*x^2+49*x+42', 'y^2=33*x^6+29*x^5+25*x^4+74*x^3+25*x^2+29*x+33', 'y^2=27*x^6+61*x^5+74*x^4+40*x^3+60*x^2+15*x+33', 'y^2=13*x^6+69*x^5+22*x^4+18*x^3+67*x^2+14*x+76', 'y^2=14*x^6+3*x^5+13*x^4+57*x^3+68*x^2+18*x+41', 'y^2=41*x^6+22*x^5+74*x^4+23*x^3+2*x^2+59*x+67', 'y^2=47*x^6+65*x^5+67*x^4+67*x^3+72*x^2+49*x+39', 'y^2=77*x^6+62*x^5+72*x^4+13*x^3+72*x^2+62*x+77', 'y^2=14*x^6+19*x^5+24*x^4+67*x^3+28*x^2+77*x+53', 'y^2=48*x^6+75*x^5+61*x^4+56*x^3+61*x^2+75*x+48', 'y^2=48*x^6+78*x^5+52*x^4+75*x^3+52*x^2+78*x+48', 'y^2=71*x^6+67*x^5+15*x^4+56*x^3+15*x^2+67*x+71', 'y^2=5*x^6+77*x^5+27*x^4+36*x^3+27*x^2+77*x+5', 'y^2=12*x^6+20*x^5+18*x^4+43*x^3+18*x^2+20*x+12', 'y^2=63*x^6+40*x^5+58*x^4+51*x^3+58*x^2+40*x+63', 'y^2=21*x^6+64*x^5+42*x^4+38*x^3+42*x^2+64*x+21', 'y^2=7*x^6+48*x^5+68*x^4+74*x^3+61*x^2+59*x+36', 'y^2=70*x^6+67*x^5+76*x^4+3*x^3+76*x^2+67*x+70', 'y^2=77*x^6+28*x^5+57*x^4+50*x^3+57*x^2+28*x+77', 'y^2=45*x^6+71*x^5+55*x^4+29*x^3+55*x^2+71*x+45', 'y^2=8*x^6+74*x^5+29*x^4+31*x^3+29*x^2+74*x+8', 'y^2=74*x^6+72*x^5+10*x^4+5*x^3+x^2+26*x+47', 'y^2=39*x^6+2*x^5+18*x^4+7*x^3+10*x^2+12*x+63', 'y^2=48*x^6+35*x^5+67*x^4+13*x^3+40*x^2+29*x+48', 'y^2=15*x^6+35*x^5+62*x^4+35*x^3+x^2+39*x+66', 'y^2=9*x^6+52*x^5+74*x^4+29*x^3+74*x^2+52*x+9', 'y^2=53*x^5+24*x^4+22*x^3+47*x^2+24*x', 'y^2=3*x^6+27*x^5+6*x^4+53*x^3+6*x^2+27*x+3', 'y^2=51*x^6+35*x^5+13*x^4+12*x^3+76*x^2+33*x+31', 'y^2=4*x^6+14*x^5+6*x^4+34*x^3+75*x^2+12*x+67', 'y^2=61*x^6+x^5+18*x^4+51*x^3+25*x^2+9*x+12', 'y^2=27*x^6+66*x^5+74*x^4+12*x^3+14*x^2+15*x+69', 'y^2=47*x^6+51*x^5+52*x^4+23*x^3+9*x^2+32*x+48', 'y^2=75*x^6+47*x^5+54*x^4+76*x^3+11*x^2+41*x+58', 'y^2=26*x^6+6*x^5+6*x^4+54*x^3+78*x^2+66*x+5'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 28, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.43.1', '2.0.7.1'], 'geometric_splitting_field': '4.0.90601.2', 'geometric_splitting_polynomials': [[81, 0, 25, 0, 1]], 'group_structure_count': 12, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 90, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 90, 'label': '2.79.au_ju', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.43.1', '2.0.7.1'], 'p': 79, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -20, 254, -1580, 6241], 'poly_str': '1 -20 254 -1580 6241 ', 'primitive_models': [], 'q': 79, 'real_poly': [1, -20, 96], 'simple_distinct': ['1.79.am', '1.79.ai'], 'simple_factors': ['1.79.amA', '1.79.aiA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,V-3', '3,2*F-2*V+9'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.90601.2', 'splitting_polynomials': [[81, 0, 25, 0, 1]], 'twist_count': 4, 'twists': [['2.79.ae_ck', '2.6241.ee_uks', 2], ['2.79.e_ck', '2.6241.ee_uks', 2], ['2.79.u_ju', '2.6241.ee_uks', 2]], 'weak_equivalence_count': 48, 'zfv_index': 192, 'zfv_index_factorization': [[2, 6], [3, 1]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 43344, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,V-3', '3,2*F-2*V+9']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 93121
{'base_label': '2.79.au_ju', 'extension_degree': 1, 'extension_label': '1.79.am', 'multiplicity': 1}
-
id: 93122
{'base_label': '2.79.au_ju', 'extension_degree': 1, 'extension_label': '1.79.ai', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.43.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.79.am', 'galois_group': '2T1', 'places': [['36', '1'], ['42', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.7.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.79.ai', 'galois_group': '2T1', 'places': [['12', '1'], ['66', '1']]}