L(s) = 1 | − 2-s + 4-s + 2·7-s − 8-s + 2·13-s − 2·14-s + 16-s − 6·17-s − 12·23-s − 25-s − 2·26-s + 2·28-s + 2·31-s − 32-s + 6·34-s + 8·37-s − 18·43-s + 12·46-s − 6·47-s − 7·49-s + 50-s + 2·52-s + 12·53-s − 2·56-s + 24·59-s + 8·61-s − 2·62-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.755·7-s − 0.353·8-s + 0.554·13-s − 0.534·14-s + 1/4·16-s − 1.45·17-s − 2.50·23-s − 1/5·25-s − 0.392·26-s + 0.377·28-s + 0.359·31-s − 0.176·32-s + 1.02·34-s + 1.31·37-s − 2.74·43-s + 1.76·46-s − 0.875·47-s − 49-s + 0.141·50-s + 0.277·52-s + 1.64·53-s − 0.267·56-s + 3.12·59-s + 1.02·61-s − 0.254·62-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.1830201225, −12.8524075832, −11.9118486001, −11.7088142284, −11.5322307280, −11.1580189822, −10.5120811325, −10.1152647782, −9.87204525884, −9.40534570676, −8.76001229423, −8.26804890939, −8.18741374225, −7.88056020760, −6.88360669588, −6.73860900675, −6.34669118392, −5.47723731973, −5.37363015538, −4.37746956078, −4.10643823878, −3.48928984064, −2.44850978333, −2.10032734759, −1.32155344015, 0,
1.32155344015, 2.10032734759, 2.44850978333, 3.48928984064, 4.10643823878, 4.37746956078, 5.37363015538, 5.47723731973, 6.34669118392, 6.73860900675, 6.88360669588, 7.88056020760, 8.18741374225, 8.26804890939, 8.76001229423, 9.40534570676, 9.87204525884, 10.1152647782, 10.5120811325, 11.1580189822, 11.5322307280, 11.7088142284, 11.9118486001, 12.8524075832, 13.1830201225