L(s) = 1 | + 2-s − 4-s − 4·7-s − 3·8-s + 9-s − 13-s − 4·14-s − 16-s + 4·17-s + 18-s + 4·19-s + 8·23-s − 6·25-s − 26-s + 4·28-s − 4·29-s − 4·31-s + 5·32-s + 4·34-s − 36-s + 4·37-s + 4·38-s − 16·43-s + 8·46-s + 2·49-s − 6·50-s + 52-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1/2·4-s − 1.51·7-s − 1.06·8-s + 1/3·9-s − 0.277·13-s − 1.06·14-s − 1/4·16-s + 0.970·17-s + 0.235·18-s + 0.917·19-s + 1.66·23-s − 6/5·25-s − 0.196·26-s + 0.755·28-s − 0.742·29-s − 0.718·31-s + 0.883·32-s + 0.685·34-s − 1/6·36-s + 0.657·37-s + 0.648·38-s − 2.43·43-s + 1.17·46-s + 2/7·49-s − 0.848·50-s + 0.138·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6967946687\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6967946687\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.0038467807, −18.4282714936, −18.0808264901, −17.2849148009, −16.5594222959, −16.4135833599, −15.5766594288, −14.9380436528, −14.7395675207, −13.6745032861, −13.4092975284, −12.9568449998, −12.3221586340, −11.8538765065, −11.0205906871, −9.95280234664, −9.65679775515, −9.19274055467, −8.17328234983, −7.26958585489, −6.54556545043, −5.65486780280, −5.01357758336, −3.71205447024, −3.14826068230,
3.14826068230, 3.71205447024, 5.01357758336, 5.65486780280, 6.54556545043, 7.26958585489, 8.17328234983, 9.19274055467, 9.65679775515, 9.95280234664, 11.0205906871, 11.8538765065, 12.3221586340, 12.9568449998, 13.4092975284, 13.6745032861, 14.7395675207, 14.9380436528, 15.5766594288, 16.4135833599, 16.5594222959, 17.2849148009, 18.0808264901, 18.4282714936, 19.0038467807