Properties

Label 4-1872-1.1-c1e2-0-1
Degree $4$
Conductor $1872$
Sign $1$
Analytic cond. $0.119360$
Root an. cond. $0.587780$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 4·7-s − 3·8-s + 9-s − 13-s − 4·14-s − 16-s + 4·17-s + 18-s + 4·19-s + 8·23-s − 6·25-s − 26-s + 4·28-s − 4·29-s − 4·31-s + 5·32-s + 4·34-s − 36-s + 4·37-s + 4·38-s − 16·43-s + 8·46-s + 2·49-s − 6·50-s + 52-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 1.51·7-s − 1.06·8-s + 1/3·9-s − 0.277·13-s − 1.06·14-s − 1/4·16-s + 0.970·17-s + 0.235·18-s + 0.917·19-s + 1.66·23-s − 6/5·25-s − 0.196·26-s + 0.755·28-s − 0.742·29-s − 0.718·31-s + 0.883·32-s + 0.685·34-s − 1/6·36-s + 0.657·37-s + 0.648·38-s − 2.43·43-s + 1.17·46-s + 2/7·49-s − 0.848·50-s + 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(0.119360\)
Root analytic conductor: \(0.587780\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1872,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6967946687\)
\(L(\frac12)\) \(\approx\) \(0.6967946687\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2$ \( 1 - T + p T^{2} \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 2 T + p T^{2} ) \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.5.a_g
7$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.7.e_o
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.11.a_g
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.17.ae_bm
19$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \) 2.19.ae_bm
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.23.ai_bu
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.29.e_ac
31$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.31.e_be
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.37.ae_ck
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.41.a_bu
43$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.43.q_fe
47$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.47.a_dq
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.53.ae_dq
59$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.59.ai_cs
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.61.e_ew
67$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.67.e_dy
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.71.i_fm
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.73.am_gk
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \) 2.79.aq_io
83$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \) 2.83.ai_ha
89$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.89.i_hi
97$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.97.am_ig
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.0038467807, −18.4282714936, −18.0808264901, −17.2849148009, −16.5594222959, −16.4135833599, −15.5766594288, −14.9380436528, −14.7395675207, −13.6745032861, −13.4092975284, −12.9568449998, −12.3221586340, −11.8538765065, −11.0205906871, −9.95280234664, −9.65679775515, −9.19274055467, −8.17328234983, −7.26958585489, −6.54556545043, −5.65486780280, −5.01357758336, −3.71205447024, −3.14826068230, 3.14826068230, 3.71205447024, 5.01357758336, 5.65486780280, 6.54556545043, 7.26958585489, 8.17328234983, 9.19274055467, 9.65679775515, 9.95280234664, 11.0205906871, 11.8538765065, 12.3221586340, 12.9568449998, 13.4092975284, 13.6745032861, 14.7395675207, 14.9380436528, 15.5766594288, 16.4135833599, 16.5594222959, 17.2849148009, 18.0808264901, 18.4282714936, 19.0038467807

Graph of the $Z$-function along the critical line