L(s) = 1 | − 3-s − 2·9-s + 4·11-s − 8·13-s + 4·17-s − 4·19-s − 8·23-s − 6·25-s + 2·27-s + 16·29-s + 8·31-s − 4·33-s + 8·37-s + 8·39-s + 4·41-s + 4·43-s − 14·49-s − 4·51-s − 16·53-s + 4·57-s + 4·59-s + 8·61-s − 4·67-s + 8·69-s + 8·71-s + 4·73-s + 6·75-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 2/3·9-s + 1.20·11-s − 2.21·13-s + 0.970·17-s − 0.917·19-s − 1.66·23-s − 6/5·25-s + 0.384·27-s + 2.97·29-s + 1.43·31-s − 0.696·33-s + 1.31·37-s + 1.28·39-s + 0.624·41-s + 0.609·43-s − 2·49-s − 0.560·51-s − 2.19·53-s + 0.529·57-s + 0.520·59-s + 1.02·61-s − 0.488·67-s + 0.963·69-s + 0.949·71-s + 0.468·73-s + 0.692·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1536 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4997926316\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4997926316\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.1792400873, −19.1551537949, −17.6707519500, −17.6322651559, −17.3311679255, −16.6272610009, −16.1152657336, −15.4732516475, −14.5925007839, −14.1819882616, −14.0930481386, −12.7248727791, −12.3172568607, −11.6664921937, −11.5820474614, −10.2342122988, −9.96467191573, −9.31735655616, −8.09899069409, −7.86574055999, −6.42897107073, −6.27282080647, −5.01452297596, −4.25303028693, −2.63895104553,
2.63895104553, 4.25303028693, 5.01452297596, 6.27282080647, 6.42897107073, 7.86574055999, 8.09899069409, 9.31735655616, 9.96467191573, 10.2342122988, 11.5820474614, 11.6664921937, 12.3172568607, 12.7248727791, 14.0930481386, 14.1819882616, 14.5925007839, 15.4732516475, 16.1152657336, 16.6272610009, 17.3311679255, 17.6322651559, 17.6707519500, 19.1551537949, 19.1792400873