Properties

Label 4-1536-1.1-c1e2-0-0
Degree $4$
Conductor $1536$
Sign $1$
Analytic cond. $0.0979366$
Root an. cond. $0.559417$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·9-s + 4·11-s − 8·13-s + 4·17-s − 4·19-s − 8·23-s − 6·25-s + 2·27-s + 16·29-s + 8·31-s − 4·33-s + 8·37-s + 8·39-s + 4·41-s + 4·43-s − 14·49-s − 4·51-s − 16·53-s + 4·57-s + 4·59-s + 8·61-s − 4·67-s + 8·69-s + 8·71-s + 4·73-s + 6·75-s + ⋯
L(s)  = 1  − 0.577·3-s − 2/3·9-s + 1.20·11-s − 2.21·13-s + 0.970·17-s − 0.917·19-s − 1.66·23-s − 6/5·25-s + 0.384·27-s + 2.97·29-s + 1.43·31-s − 0.696·33-s + 1.31·37-s + 1.28·39-s + 0.624·41-s + 0.609·43-s − 2·49-s − 0.560·51-s − 2.19·53-s + 0.529·57-s + 0.520·59-s + 1.02·61-s − 0.488·67-s + 0.963·69-s + 0.949·71-s + 0.468·73-s + 0.692·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1536 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1536\)    =    \(2^{9} \cdot 3\)
Sign: $1$
Analytic conductor: \(0.0979366\)
Root analytic conductor: \(0.559417\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1536,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4997926316\)
\(L(\frac12)\) \(\approx\) \(0.4997926316\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + p T^{2} ) \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.5.a_g
7$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.7.a_o
11$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \) 2.11.ae_w
13$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.13.i_bm
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.17.ae_bm
19$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.19.e_bm
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.23.i_bu
29$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 6 T + p T^{2} ) \) 2.29.aq_eo
31$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.31.ai_ck
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.37.ai_di
41$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.41.ae_w
43$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \) 2.43.ae_di
47$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.47.a_dq
53$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) 2.53.q_fe
59$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \) 2.59.ae_eo
61$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.61.ai_dy
67$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.67.e_fe
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.71.ai_fm
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.73.ae_di
79$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.79.i_gc
83$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.83.e_gk
89$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.89.ae_eo
97$C_2$$\times$$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.97.au_iw
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.1792400873, −19.1551537949, −17.6707519500, −17.6322651559, −17.3311679255, −16.6272610009, −16.1152657336, −15.4732516475, −14.5925007839, −14.1819882616, −14.0930481386, −12.7248727791, −12.3172568607, −11.6664921937, −11.5820474614, −10.2342122988, −9.96467191573, −9.31735655616, −8.09899069409, −7.86574055999, −6.42897107073, −6.27282080647, −5.01452297596, −4.25303028693, −2.63895104553, 2.63895104553, 4.25303028693, 5.01452297596, 6.27282080647, 6.42897107073, 7.86574055999, 8.09899069409, 9.31735655616, 9.96467191573, 10.2342122988, 11.5820474614, 11.6664921937, 12.3172568607, 12.7248727791, 14.0930481386, 14.1819882616, 14.5925007839, 15.4732516475, 16.1152657336, 16.6272610009, 17.3311679255, 17.6322651559, 17.6707519500, 19.1551537949, 19.1792400873

Graph of the $Z$-function along the critical line