Invariants
| Base field: | $\F_{13}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 2 x + 13 x^{2} )( 1 + 6 x + 13 x^{2} )$ |
| $1 + 8 x + 38 x^{2} + 104 x^{3} + 169 x^{4}$ | |
| Frobenius angles: | $\pm0.589456187511$, $\pm0.812832958189$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $12$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $320$ | $30720$ | $4639040$ | $818380800$ | $137860769600$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $22$ | $182$ | $2110$ | $28654$ | $371302$ | $4830374$ | $62725006$ | $815767006$ | $10604730550$ | $137857106582$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=9 x^6+2 x^5+3 x^4+10 x^3+x^2+6 x+9$
- $y^2=2 x^6+5 x^5+8 x^4+8 x^3+2 x^2+6 x+11$
- $y^2=9 x^6+3 x^5+12 x^4+8 x^3+12 x^2+3 x+9$
- $y^2=4 x^6+5 x^5+2 x^4+7 x^3+9 x^2+12 x+4$
- $y^2=10 x^5+8 x^4+2 x^3+8 x^2+10 x$
- $y^2=x^6+11 x^5+8 x^4+2 x^3+8 x^2+11 x+1$
- $y^2=12 x^6+2 x^5+10 x^4+9 x^3+12 x^2+7 x+1$
- $y^2=12 x^6+7 x^5+4 x^4+x^3+4 x^2+7 x+12$
- $y^2=4 x^6+4 x^5+11 x^4+11 x^3+8 x^2+x+9$
- $y^2=2 x^6+5 x^5+12 x^4+12 x^3+x^2+5 x+11$
- $y^2=4 x^6+6 x^5+11 x^4+4 x^3+11 x^2+6 x+4$
- $y^2=3 x^6+10 x^5+9 x^4+3 x^3+9 x^2+9 x+4$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{13}$.
Endomorphism algebra over $\F_{13}$| The isogeny class factors as 1.13.c $\times$ 1.13.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.