Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 10 x + 29 x^{2} )( 1 - 6 x + 29 x^{2} )$ |
$1 - 16 x + 118 x^{2} - 464 x^{3} + 841 x^{4}$ | |
Frobenius angles: | $\pm0.121118941591$, $\pm0.311919362152$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $22$ |
Isomorphism classes: | 104 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $480$ | $691200$ | $599124960$ | $501037056000$ | $420733195442400$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $14$ | $822$ | $24566$ | $708398$ | $20512414$ | $594810342$ | $17249889286$ | $500247800158$ | $14507159554094$ | $420707303799702$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 22 curves (of which all are hyperelliptic):
- $y^2=14 x^6+11 x^5+6 x^4+10 x^3+21 x^2+22 x+4$
- $y^2=14 x^6+7 x^5+26 x^4+11 x^3+3 x^2+7 x+15$
- $y^2=8 x^6+7 x^5+17 x^4+19 x^3+17 x^2+7 x+8$
- $y^2=28 x^6+19 x^5+21 x^4+13 x^3+21 x^2+19 x+28$
- $y^2=26 x^6+14 x^5+16 x^4+17 x^3+13 x^2+22 x+27$
- $y^2=25 x^6+10 x^5+25 x^4+24 x^3+25 x^2+10 x+25$
- $y^2=27 x^6+22 x^5+12 x^4+22 x^3+12 x^2+22 x+27$
- $y^2=22 x^6+6 x^5+22 x^3+9 x^2+28 x+14$
- $y^2=23 x^6+2 x^5+7 x^4+5 x^3+7 x^2+2 x+23$
- $y^2=13 x^6+x^5+25 x^4+14 x^3+15 x^2+18 x+17$
- $y^2=26 x^6+x^5+23 x^4+23 x^3+11 x^2+2 x+10$
- $y^2=19 x^6+12 x^5+19 x^4+15 x^3+19 x^2+12 x+19$
- $y^2=17 x^6+22 x^5+21 x^4+27 x^3+3 x^2+4 x+14$
- $y^2=11 x^6+6 x^5+26 x^4+24 x^3+11 x^2+20 x+28$
- $y^2=19 x^6+14 x^5+3 x^4+14 x^3+7 x^2+18 x+15$
- $y^2=8 x^6+x^5+10 x^4+7 x^3+10 x^2+x+8$
- $y^2=27 x^6+13 x^5+8 x^4+22 x^3+8 x^2+13 x+27$
- $y^2=17 x^6+27 x^5+10 x^4+23 x^3+10 x^2+27 x+17$
- $y^2=2 x^6+4 x^5+10 x^4+3 x^3+15 x^2+9 x+14$
- $y^2=19 x^6+18 x^5+14 x^4+16 x^3+21 x^2+26 x+17$
- $y^2=4 x^6+3 x^5+9 x^4+6 x^3+9 x^2+3 x+4$
- $y^2=8 x^6+7 x^5+27 x^4+23 x^3+16 x^2+28 x+17$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The isogeny class factors as 1.29.ak $\times$ 1.29.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.