Properties

Label 2-99372-1.1-c1-0-11
Degree $2$
Conductor $99372$
Sign $1$
Analytic cond. $793.489$
Root an. cond. $28.1689$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·5-s + 9-s + 4·15-s − 2·17-s − 4·23-s + 11·25-s − 27-s + 2·29-s − 8·31-s + 8·37-s + 4·41-s + 8·43-s − 4·45-s + 2·51-s + 6·53-s + 8·59-s + 10·61-s + 8·67-s + 4·69-s + 4·73-s − 11·75-s + 12·79-s + 81-s + 8·83-s + 8·85-s − 2·87-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.78·5-s + 1/3·9-s + 1.03·15-s − 0.485·17-s − 0.834·23-s + 11/5·25-s − 0.192·27-s + 0.371·29-s − 1.43·31-s + 1.31·37-s + 0.624·41-s + 1.21·43-s − 0.596·45-s + 0.280·51-s + 0.824·53-s + 1.04·59-s + 1.28·61-s + 0.977·67-s + 0.481·69-s + 0.468·73-s − 1.27·75-s + 1.35·79-s + 1/9·81-s + 0.878·83-s + 0.867·85-s − 0.214·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99372 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99372 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(99372\)    =    \(2^{2} \cdot 3 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(793.489\)
Root analytic conductor: \(28.1689\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 99372,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.296734651\)
\(L(\frac12)\) \(\approx\) \(1.296734651\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.78057808411161, −12.93870266582614, −12.79091468259887, −12.22542660834407, −11.69102147922974, −11.42194621565772, −10.91924975347544, −10.56884805064973, −9.846285494940056, −9.267383956756431, −8.690683294365890, −8.203291362694888, −7.604697338665040, −7.390858138768003, −6.727069631245778, −6.204403230030282, −5.550592080279650, −4.917297168271017, −4.405273751156251, −3.774550357301377, −3.658934795960179, −2.604860584887498, −2.041839915258147, −0.8152837555480384, −0.5320334257880803, 0.5320334257880803, 0.8152837555480384, 2.041839915258147, 2.604860584887498, 3.658934795960179, 3.774550357301377, 4.405273751156251, 4.917297168271017, 5.550592080279650, 6.204403230030282, 6.727069631245778, 7.390858138768003, 7.604697338665040, 8.203291362694888, 8.690683294365890, 9.267383956756431, 9.846285494940056, 10.56884805064973, 10.91924975347544, 11.42194621565772, 11.69102147922974, 12.22542660834407, 12.79091468259887, 12.93870266582614, 13.78057808411161

Graph of the $Z$-function along the critical line