Properties

Label 2-9768-1.1-c1-0-110
Degree $2$
Conductor $9768$
Sign $-1$
Analytic cond. $77.9978$
Root an. cond. $8.83164$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s + 11-s + 2·13-s + 2·15-s + 6·17-s − 4·19-s + 4·23-s − 25-s − 27-s − 6·29-s − 4·31-s − 33-s + 37-s − 2·39-s − 6·41-s − 4·43-s − 2·45-s + 8·47-s − 7·49-s − 6·51-s − 10·53-s − 2·55-s + 4·57-s + 2·61-s − 4·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s + 0.301·11-s + 0.554·13-s + 0.516·15-s + 1.45·17-s − 0.917·19-s + 0.834·23-s − 1/5·25-s − 0.192·27-s − 1.11·29-s − 0.718·31-s − 0.174·33-s + 0.164·37-s − 0.320·39-s − 0.937·41-s − 0.609·43-s − 0.298·45-s + 1.16·47-s − 49-s − 0.840·51-s − 1.37·53-s − 0.269·55-s + 0.529·57-s + 0.256·61-s − 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9768 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9768\)    =    \(2^{3} \cdot 3 \cdot 11 \cdot 37\)
Sign: $-1$
Analytic conductor: \(77.9978\)
Root analytic conductor: \(8.83164\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9768,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 - T \)
37 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.36351445553741088290978323292, −6.65865299612232669223662535364, −5.97244158244895265244965653429, −5.28565840331855219923861852438, −4.58640382836013945008296894204, −3.65344962138666470403302250013, −3.41654814639989437401056155637, −2.01735661039112930056099486941, −1.07526534049776055484248113288, 0, 1.07526534049776055484248113288, 2.01735661039112930056099486941, 3.41654814639989437401056155637, 3.65344962138666470403302250013, 4.58640382836013945008296894204, 5.28565840331855219923861852438, 5.97244158244895265244965653429, 6.65865299612232669223662535364, 7.36351445553741088290978323292

Graph of the $Z$-function along the critical line