Properties

Label 9768.b
Number of curves $4$
Conductor $9768$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 9768.b have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1 - T\)
\(37\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 9768.b do not have complex multiplication.

Modular form 9768.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + q^{9} + q^{11} + 2 q^{13} + 2 q^{15} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 9768.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9768.b1 9768g3 \([0, -1, 0, -19464, -1036836]\) \(796420363297828/1669877451\) \(1709954509824\) \([2]\) \(16384\) \(1.2325\)  
9768.b2 9768g2 \([0, -1, 0, -1644, -3276]\) \(1920672547792/1086823089\) \(278226710784\) \([2, 2]\) \(8192\) \(0.88595\)  
9768.b3 9768g1 \([0, -1, 0, -1039, 13180]\) \(7760117512192/43879077\) \(702065232\) \([4]\) \(4096\) \(0.53938\) \(\Gamma_0(N)\)-optimal
9768.b4 9768g4 \([0, -1, 0, 6496, -32580]\) \(29600220537212/17520015447\) \(-17940495817728\) \([2]\) \(16384\) \(1.2325\)