Properties

Label 2-9702-1.1-c1-0-132
Degree $2$
Conductor $9702$
Sign $-1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2·5-s − 8-s − 2·10-s − 11-s + 2·13-s + 16-s − 17-s − 3·19-s + 2·20-s + 22-s + 23-s − 25-s − 2·26-s + 29-s − 2·31-s − 32-s + 34-s − 5·37-s + 3·38-s − 2·40-s + 10·41-s + 43-s − 44-s − 46-s − 7·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.894·5-s − 0.353·8-s − 0.632·10-s − 0.301·11-s + 0.554·13-s + 1/4·16-s − 0.242·17-s − 0.688·19-s + 0.447·20-s + 0.213·22-s + 0.208·23-s − 1/5·25-s − 0.392·26-s + 0.185·29-s − 0.359·31-s − 0.176·32-s + 0.171·34-s − 0.821·37-s + 0.486·38-s − 0.316·40-s + 1.56·41-s + 0.152·43-s − 0.150·44-s − 0.147·46-s − 1.02·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.47025949539040111908408626278, −6.52583319483010552707774665565, −6.19257038013467596096264710291, −5.44598355032017029545060399064, −4.64975852135252741522105715146, −3.69424173386618508370048645432, −2.78908945837774141120478894029, −2.02214958164271635338498240195, −1.29860539333982514897792539671, 0, 1.29860539333982514897792539671, 2.02214958164271635338498240195, 2.78908945837774141120478894029, 3.69424173386618508370048645432, 4.64975852135252741522105715146, 5.44598355032017029545060399064, 6.19257038013467596096264710291, 6.52583319483010552707774665565, 7.47025949539040111908408626278

Graph of the $Z$-function along the critical line