| L(s)  = 1  |   − 2-s     + 4-s   + 2·5-s       − 8-s     − 2·10-s   − 11-s     + 2·13-s       + 16-s   − 17-s     − 3·19-s   + 2·20-s     + 22-s   + 23-s     − 25-s   − 2·26-s       + 29-s     − 2·31-s   − 32-s     + 34-s       − 5·37-s   + 3·38-s     − 2·40-s   + 10·41-s     + 43-s   − 44-s     − 46-s   − 7·47-s  + ⋯ | 
 
| L(s)  = 1  |   − 0.707·2-s     + 1/2·4-s   + 0.894·5-s       − 0.353·8-s     − 0.632·10-s   − 0.301·11-s     + 0.554·13-s       + 1/4·16-s   − 0.242·17-s     − 0.688·19-s   + 0.447·20-s     + 0.213·22-s   + 0.208·23-s     − 1/5·25-s   − 0.392·26-s       + 0.185·29-s     − 0.359·31-s   − 0.176·32-s     + 0.171·34-s       − 0.821·37-s   + 0.486·38-s     − 0.316·40-s   + 1.56·41-s     + 0.152·43-s   − 0.150·44-s     − 0.147·46-s   − 1.02·47-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 + T \)  |    | 
 | 3 |  \( 1 \)  |    | 
 | 7 |  \( 1 \)  |    | 
 | 11 |  \( 1 + T \)  |    | 
| good | 5 |  \( 1 - 2 T + p T^{2} \)  |  1.5.ac  | 
 | 13 |  \( 1 - 2 T + p T^{2} \)  |  1.13.ac  | 
 | 17 |  \( 1 + T + p T^{2} \)  |  1.17.b  | 
 | 19 |  \( 1 + 3 T + p T^{2} \)  |  1.19.d  | 
 | 23 |  \( 1 - T + p T^{2} \)  |  1.23.ab  | 
 | 29 |  \( 1 - T + p T^{2} \)  |  1.29.ab  | 
 | 31 |  \( 1 + 2 T + p T^{2} \)  |  1.31.c  | 
 | 37 |  \( 1 + 5 T + p T^{2} \)  |  1.37.f  | 
 | 41 |  \( 1 - 10 T + p T^{2} \)  |  1.41.ak  | 
 | 43 |  \( 1 - T + p T^{2} \)  |  1.43.ab  | 
 | 47 |  \( 1 + 7 T + p T^{2} \)  |  1.47.h  | 
 | 53 |  \( 1 + 12 T + p T^{2} \)  |  1.53.m  | 
 | 59 |  \( 1 - 3 T + p T^{2} \)  |  1.59.ad  | 
 | 61 |  \( 1 + 14 T + p T^{2} \)  |  1.61.o  | 
 | 67 |  \( 1 - 12 T + p T^{2} \)  |  1.67.am  | 
 | 71 |  \( 1 + 5 T + p T^{2} \)  |  1.71.f  | 
 | 73 |  \( 1 + 8 T + p T^{2} \)  |  1.73.i  | 
 | 79 |  \( 1 + p T^{2} \)  |  1.79.a  | 
 | 83 |  \( 1 - 6 T + p T^{2} \)  |  1.83.ag  | 
 | 89 |  \( 1 - 6 T + p T^{2} \)  |  1.89.ag  | 
 | 97 |  \( 1 - 7 T + p T^{2} \)  |  1.97.ah  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−7.47025949539040111908408626278, −6.52583319483010552707774665565, −6.19257038013467596096264710291, −5.44598355032017029545060399064, −4.64975852135252741522105715146, −3.69424173386618508370048645432, −2.78908945837774141120478894029, −2.02214958164271635338498240195, −1.29860539333982514897792539671, 0, 
1.29860539333982514897792539671, 2.02214958164271635338498240195, 2.78908945837774141120478894029, 3.69424173386618508370048645432, 4.64975852135252741522105715146, 5.44598355032017029545060399064, 6.19257038013467596096264710291, 6.52583319483010552707774665565, 7.47025949539040111908408626278