| L(s)  = 1 | + 2·3-s         + 3·7-s     + 9-s         + 4·13-s         + 2·17-s     − 2·19-s     + 6·21-s     − 23-s         − 4·27-s     − 6·29-s     + 5·31-s             − 8·37-s     + 8·39-s     − 41-s     + 8·43-s         − 5·47-s     + 2·49-s     + 4·51-s     + 4·53-s         − 4·57-s     − 14·59-s     + 14·61-s     + 3·63-s         − 2·67-s     − 2·69-s     − 8·71-s     − 5·73-s  + ⋯ | 
| L(s)  = 1 | + 1.15·3-s         + 1.13·7-s     + 1/3·9-s         + 1.10·13-s         + 0.485·17-s     − 0.458·19-s     + 1.30·21-s     − 0.208·23-s         − 0.769·27-s     − 1.11·29-s     + 0.898·31-s             − 1.31·37-s     + 1.28·39-s     − 0.156·41-s     + 1.21·43-s         − 0.729·47-s     + 2/7·49-s     + 0.560·51-s     + 0.549·53-s         − 0.529·57-s     − 1.82·59-s     + 1.79·61-s     + 0.377·63-s         − 0.244·67-s     − 0.240·69-s     − 0.949·71-s     − 0.585·73-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 96800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 96800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 5 | \( 1 \) |  | 
|  | 11 | \( 1 \) |  | 
| good | 3 | \( 1 - 2 T + p T^{2} \) | 1.3.ac | 
|  | 7 | \( 1 - 3 T + p T^{2} \) | 1.7.ad | 
|  | 13 | \( 1 - 4 T + p T^{2} \) | 1.13.ae | 
|  | 17 | \( 1 - 2 T + p T^{2} \) | 1.17.ac | 
|  | 19 | \( 1 + 2 T + p T^{2} \) | 1.19.c | 
|  | 23 | \( 1 + T + p T^{2} \) | 1.23.b | 
|  | 29 | \( 1 + 6 T + p T^{2} \) | 1.29.g | 
|  | 31 | \( 1 - 5 T + p T^{2} \) | 1.31.af | 
|  | 37 | \( 1 + 8 T + p T^{2} \) | 1.37.i | 
|  | 41 | \( 1 + T + p T^{2} \) | 1.41.b | 
|  | 43 | \( 1 - 8 T + p T^{2} \) | 1.43.ai | 
|  | 47 | \( 1 + 5 T + p T^{2} \) | 1.47.f | 
|  | 53 | \( 1 - 4 T + p T^{2} \) | 1.53.ae | 
|  | 59 | \( 1 + 14 T + p T^{2} \) | 1.59.o | 
|  | 61 | \( 1 - 14 T + p T^{2} \) | 1.61.ao | 
|  | 67 | \( 1 + 2 T + p T^{2} \) | 1.67.c | 
|  | 71 | \( 1 + 8 T + p T^{2} \) | 1.71.i | 
|  | 73 | \( 1 + 5 T + p T^{2} \) | 1.73.f | 
|  | 79 | \( 1 + 8 T + p T^{2} \) | 1.79.i | 
|  | 83 | \( 1 - 4 T + p T^{2} \) | 1.83.ae | 
|  | 89 | \( 1 + T + p T^{2} \) | 1.89.b | 
|  | 97 | \( 1 + 9 T + p T^{2} \) | 1.97.j | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.98298718668124, −13.70001828489690, −13.25477193855866, −12.65650090659412, −12.04074179457540, −11.57482052314923, −11.01080854191043, −10.70261795128166, −10.00926521093402, −9.472799369568235, −8.849469512604335, −8.583825728301948, −8.043199565692294, −7.782581288944584, −7.107040412894151, −6.501777159903015, −5.695823932009279, −5.461712790598311, −4.566692355155588, −4.084218685741134, −3.561742004907476, −2.955759398289782, −2.314955086828564, −1.631144267858379, −1.243287656378754, 0, 
1.243287656378754, 1.631144267858379, 2.314955086828564, 2.955759398289782, 3.561742004907476, 4.084218685741134, 4.566692355155588, 5.461712790598311, 5.695823932009279, 6.501777159903015, 7.107040412894151, 7.782581288944584, 8.043199565692294, 8.583825728301948, 8.849469512604335, 9.472799369568235, 10.00926521093402, 10.70261795128166, 11.01080854191043, 11.57482052314923, 12.04074179457540, 12.65650090659412, 13.25477193855866, 13.70001828489690, 13.98298718668124
