Properties

Label 2-96800-1.1-c1-0-62
Degree $2$
Conductor $96800$
Sign $-1$
Analytic cond. $772.951$
Root an. cond. $27.8020$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 3·7-s + 9-s + 4·13-s + 2·17-s − 2·19-s + 6·21-s − 23-s − 4·27-s − 6·29-s + 5·31-s − 8·37-s + 8·39-s − 41-s + 8·43-s − 5·47-s + 2·49-s + 4·51-s + 4·53-s − 4·57-s − 14·59-s + 14·61-s + 3·63-s − 2·67-s − 2·69-s − 8·71-s − 5·73-s + ⋯
L(s)  = 1  + 1.15·3-s + 1.13·7-s + 1/3·9-s + 1.10·13-s + 0.485·17-s − 0.458·19-s + 1.30·21-s − 0.208·23-s − 0.769·27-s − 1.11·29-s + 0.898·31-s − 1.31·37-s + 1.28·39-s − 0.156·41-s + 1.21·43-s − 0.729·47-s + 2/7·49-s + 0.560·51-s + 0.549·53-s − 0.529·57-s − 1.82·59-s + 1.79·61-s + 0.377·63-s − 0.244·67-s − 0.240·69-s − 0.949·71-s − 0.585·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 96800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 96800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(96800\)    =    \(2^{5} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(772.951\)
Root analytic conductor: \(27.8020\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 96800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + T + p T^{2} \) 1.41.b
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 5 T + p T^{2} \) 1.47.f
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 + 9 T + p T^{2} \) 1.97.j
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.98298718668124, −13.70001828489690, −13.25477193855866, −12.65650090659412, −12.04074179457540, −11.57482052314923, −11.01080854191043, −10.70261795128166, −10.00926521093402, −9.472799369568235, −8.849469512604335, −8.583825728301948, −8.043199565692294, −7.782581288944584, −7.107040412894151, −6.501777159903015, −5.695823932009279, −5.461712790598311, −4.566692355155588, −4.084218685741134, −3.561742004907476, −2.955759398289782, −2.314955086828564, −1.631144267858379, −1.243287656378754, 0, 1.243287656378754, 1.631144267858379, 2.314955086828564, 2.955759398289782, 3.561742004907476, 4.084218685741134, 4.566692355155588, 5.461712790598311, 5.695823932009279, 6.501777159903015, 7.107040412894151, 7.782581288944584, 8.043199565692294, 8.583825728301948, 8.849469512604335, 9.472799369568235, 10.00926521093402, 10.70261795128166, 11.01080854191043, 11.57482052314923, 12.04074179457540, 12.65650090659412, 13.25477193855866, 13.70001828489690, 13.98298718668124

Graph of the $Z$-function along the critical line